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Abstract. Realization theory for linear input-output operators and frequency-domain
methods for the solvability of Riccati operator equations are used for the stability
and instability investigation of a class of nonlinear Volterra integral equations in some
Hilbert space. The key idea is to consider, similar to the Volterra equation, a time-
invariant control system generated by an abstract ODE in some weighted Sobolev
space, which has the same stability properties as the Volterra equation.
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AMS subject classification: Primary 45M05, 34G20, secondary 47D06,93B52

0 Introduction

The first step in the derivation of equations describing the dynamic behavior of obser-
vations is very often a Volterra integral equation ([1, 20, 28]) which represents causal or
input-output properties of such observations or time-series. Stability, oscillating behavior,
and other qualitative properties from a Volterra integral equation can be observed directly
by frequency-domain methods developed in [9, 22, 27, 31]. However, for other types of
dynamic behavior such as instability and dichotomy it is useful to consider together with
the given Volterra integral equation an associated realization as evolution equation in
some function spaces. Realization theory in Hilbert and Fréchet spaces developed for lin-
ear input-output operators, can be found in [13, 14, 21, 25, 33]. First results where linear
realization theory was used for the stability investigation of finite-dimensional nonlinear
Volterra equations can be found in the papers [2, 6, 7].

In the present paper we continue these investigations for infinite-dimensional Volterra
equations. In Section 1 we consider general nonlinear systems in the sense of V. A. Yakubo-
vich ([17, 32]). We show that the use of realization theory ([25]) gives the opportunity to
consider abstract time-invariant control systems associated to the processes investigated
by V. A. Yakubovich.

The time-invariant control system consists of a weighted Sobolev space, an impulse op-
erator as generator of the shift semigroup, a control operator which is determined by the
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linear part of the kernel of the integral equation, an observation operator and a nonlinear
operator which comes from the nonlinear part of the kernel.

In Section 2 we prove the solvability of Riccati operator equations for the realizations
of Volterra integral equations in a Hilbert space. This result is very close to a theorem
proved by V. A. Brusin ([7]) for the finite-dimensional case. This theorem is used in
Section 3 for the derivation of frequency-domain conditions for stability and instability of
Volterra integral equations in a Hilbert space.

In Section 4 we investigate a well-known control problem of the flow of gas or liquid in
a tube ([8, 15, 19, 23, 27]). The abstract stability theory for Volterra integral equations,
developed in Section 3, is used to show that different realizations of the given Volterra
equation, such as a PDE with boundary control or an ODE with delay, can have the same
stability properties as the Volterra equation.

1 Realization of infinite-dimensional Volterra equa-
tions as time invariant control systems in weighted
Hilbert spaces

For a Hilbert space Z with scalar product (-, ) and norm |- | the space L2 .(R; Z) consists

loc

of locally L?-functions on R with values in Z and with a topology defined by the family

of seminorms
n 1/2
|z|n:=(/ 0 Pa) ", n=v2.

—-n

Thus the space L2 (R; Z) is considered as a Fréchet space, i.e. as a complete metrizable
loc

loc
linear topological space. For any interval J C R we regard L2 (J;Z) as a subspace
(R; Z) identifying L2 .(J; Z) with the set of functions in L2 (R; Z) which vanish

of I?
outside of 7. Suppose that Y and U are Hilbert spaces and introduce the Fréchet spaces

loc

I (R;Y) and L2 (R;U). Assume that
¢ L (R Y) x Ry x Lo (R Y) = Lio(Ry;Y) (1.1)
is a nonlinear operator generating the Volterra functional equation
y=0¢(yt,h). (1.2)

Assume also that there are a continuous linear operator

T Ligo(R U) = Li (R Y) (1.3)
and a nonlinear operator
¢t Lige(Ry5Y) x Ry = Lig (Ry5U) (1.4)
such that the operator (1.1) can be written as
¢y, t,h) = Toly,t) + h(t), (1.5)



where h € L2 (R ;Y) is considered as perturbation or forcing function. Thus the Volterra
functional equation has the form

y=Tu+h, (1.6a)

u=p(y,t). (1.6b)

We call (1.6a) the linear part and (1.6b) the nonlinear part of (1.5). A function y €
L% (R.;Y) satisfying (1.6a), (1.6b) for a.a. t € R, is called solution. Any pair (y,u),
where y is a solution of (1.6a), (1.6.b) and u = ¢(y,t) is said to be a process generated
by (1.6a), (1.6b).

The following construction of a “nonlinear dynamical system” is a modified version of
[32, 17]. Assume that for each T > 0 there is a Hermitian form

Fr: L*(0,T;Y) x L*(0,T;U) = R (1.7)

such that the family of all forms {Fr}r>¢ is generated by uniformly bounded and self-
adjoint linear operators in L2(0,T;Y) x L?(0,T;U). Suppose that for any process (y, u)
generated by (1.6a), (1.6b) there exists a sequence {T,,}5°, of positive numbers such that
T, — +oo and

Fr,Pr,y,Pru)>0,n=1,2,.... (1.8)

Here Pr : L2 (Ry;Y) — L},
any 7' > 0 the restriction operators on (0,7).

The set of all functions (y,u) € L (Ry;Y) x L2 (Ry;U) for which (1.8) is satisfied
with a fixed sequence {73}, Ty — +oc, is denoted by N{Zk}. The set of all functions
(y,u) € LE.(R,;Y) x L2 (R, ;U) for which there exists at least one sequence {T}}%,
satisfying (1.8) is denoted by N.

Instead of (1.6a), (1.6b) we consider the extended system

(0,7;Y) and Pr : L2 (R,;U) — L2

loc

(0,T;U) denote for

y=Tu+h, (1.9a)

(y,u) € N. (1.9b)

We call (1.9a) the linear part and (1.9b) the nonlinear part of the extended system. A pair
of functions (y,u) € L (Ry;Y) x L2 (R, ;U) is called a process determined by (1.9a),
(1.9b) if there exists a function h € L2 (R,;Y) such that the triple (y,u,h) satisfies
(1.9a), (1.9b) for a.a. ¢t > 0.

A process (y,u) determined by (1.9a), (1.9b) is said to be stable if for any h € L?(R,;Y)
such that (y,u, h) satisfies (1.9a), (1.9b) we have y € L*(R,;Y) and v € L*(R.;U). In
other case it is called unstable.

We say that the extended system (1.9a), (1.9b) is absolute stable if there is a C' > 0 such
that for any h € L*(R,;Y) and any process (y,u), for which (y,u,h) satisfies (1.9a),

(1.9b), has the properties y € L*(R,;Y),u € L*(R,;U) and

Y 22w, vy 0 Tow, o) S Olh fag, v - (1.10)

The extended system (1.9a), (1.9b) is called absolute unstable if for any sequence
{T}32,, T, — oo, there exists a Hermitian operator M : L*(R,;Y) — L*(R;;Y) such
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that the set C := {h[(Mh,h)r2r,;yy > 0} is nonempty and for h € C we have for any
triple (y,u, h) generated by (1.9a), (1.9b) with {T}}$, the properties y ¢ L*(R,;Y") and
u¢ L*(Ry;U).

We say ([32]) that the extended system (1.9a), (1.9b) is minimally stable if for any h €
L*(R,;Y) and any process (y,u) such that (y,u,h) is generated by (1.9a), (1.9b) with
a sequence {7}, there exists a sequence of processes {(y",u")}>, such that for any
n = 1,2,... the triple (y*,u", h) is generated by (1.9a), (1.9b), y* € L*(R.;Y),u" €
L*(Ry;U) and

" |%2(R+;Y) + | u” |%2(1R+;U) > | Pr,y |%2(0,Tn;Y) + | Pr,u |%2(0,TR;U) : (1.11)

The extended system (1.9a), (1.9b) is said to be minimally unstable ([26]) if there exists a
perturbation » € L?(R,;Y) and a process (y,u) such that (y, u, h) is generated by (1.9a),
(1.9b) with the sequence {T}},,y ¢ L*(Ry;Y),u ¢ L?*(Ry;U) and there is a sequence
of processes (y",u")>° ; such that the triples (y", u", h) a generated by (1.9a), (1.9b) and
so that P, (y — y™) = 0, Prp(u—u") =0,n=1,2,... .

The following theorem is the specification of two more abstract assertions from [17, 26, 32]
to our situation.

Theorem 1.1 Consider the ertended system (1.9a), (1.9b) and the associated forms
{Fr}rso from (1.7). Suppose that there erists a number 6 > 0 such that

liszljip Fr(Pry,Pru) < -4 [| Y |%2(R+;Y) +|u |%2(R+;U)]
V(y,u) € L*(R;Y) x L*(Ry;U) :y = Tu. (1.12)
Then it holds:
a) If the system (1.9a), (1.9b) is minimally stable then it is absolute stable.

b) If the system (1.9a), (1.9b) is minimally unstable then it is absolute unstable.

It will be shown in this paper that an abstract result such as Theorem 1.1 can be derived
under very similar conditions in a more practical form if we use the realization theory
from [13, 21, 25, 33].

Let us discuss for this the realizability of the operator equation (1.9a), (1.9b) as abstract
differential equation. Important information comes from the linear operator (1.3) which
we call input-output operator of the linear part of (1.9a). For any interval J C R, a Hilbert
space Z and any s € R denote by 7° the shift operator acting on functions f : 7 — Z by

sen . flt+s) if t+seJ,
Tf(t)"{ 0 if t+s¢J.

The input-output operator (1.3) is called time invariant if 7*T = T for every t € R and
is called causal if for all ¢t > 0

u(t)=0,Vt<T = Tut)=0,Vt<T.



This implies that 7 in (1.3) is defined by its restriction

T ¢ Lige(Ri;U) = Ligo(Ry5Y). (1.13)

For any interval J C R, a Hilbert space Z and a parameter p € R we introduce the
weighted spaces L>(J; Z) and W,*(J; Z) by

1(7:2) = {f € 125:2) | | 1 70) < o)

and
W, AT Z) ={f € L(T:Z)| f € L3(T; 2)} -
(f denotes the distribution derivative.) Let us assume that 7 from (1.3) can be considered
for some p € R as bounded linear operator
. T2(TR. 2 (R
T:LA(RU) = L2(R;Y). (1.14)

If the property (1.14) is satisfied the input-output operator can be realized as time-
invariant control system in weighted Hilbert spaces. The key information for this gives
the Hankel operator H associated to the input-output operator 7T, i.e.

H:LiR_;U) — L*(R;Y) (1.15)

given by # = P, T P_, where P, := Pg_,P_ := Pr_ and Pgu := (gu, where (g is
the characteristic function of F C R. The space L3(R_;Z) is the space of compactly
supported square integrable functions which is dual to the space L2 _(R,;Z) via the

loc

pairing (¢, ¢) = [*2(1h(=t), p(t))zdt. According to [25] we can describe a state-space
description for (1.9a) whose input-output behaviour is given by 7 as

2(t; z0,u) = 20 + 7T (Cogu) (1.16a)
y(t; 20, u) = 20(t) + (Tu)(t) , t >0 (1.16Db)
for 2o € Zo := L2(R;;Y) and u € Li (Ry;U). It is clear that (1.16a), (1.16b) also has
the time invariance property, i.e.
2(t + s;20,u) = 2 (t; 2 (8; 20, u), T°1)
y(t + s520,u) =y (8 2 (5320, 1) , T"u)
Vt,s Ry, Vz € Zy,YVu e L (Ry;U).

The state space realization (1.16a), (1.16b) is generated by the time-invariant control

evolution system
z = Az + Bu, (1.17a)

y=C(z— (M —A) 'Bu) + x(Mu, (1.17b)
defined in the rigged Hilbert space structure ([4]) (or Gelfand triple [30]) Z; C Zy C Z_4
with Zy as above and Z; := W,*(R,;Y) and the linear operators A € L(Z,Z) N
L(Zy,Z_1),B € LU, Z_1) and C € L(Z,Y) given by
Ag:=¢, £ € D(4),
B = (Hn)(0), n € 2", == {n € W,*(R_;Y) [n(0) = 0},
Cz:=2(0), z € Z;.



In (1.17b) A ¢ 0(A) is an arbitrary value. For this values and any other value u ¢ o(A)
the operator x(\) € L(U,Y) is defined by the identity

() = X(1) = (1= NC = A) ™ (ul = A)7'B. (1.18)

Note that such an output operator (1.17b) is necessary because the weak solution of
(1.17a) will in general not be in Z; unless Bu(t) € Z,, whereas the expression

z — (ul — A)"'Bu will be in Z; whenever v € W2%(0,T;U) and Az(0) + Bu(0) € Z,
([25]).

If we have the additional properties B € L(U, Z,) or C € L(Zy,Y) the usual transfer ope-
rator C(AI — A)~! B makes sense. In this case it follows from (1.18) that y()\) =

C(M — A)~!'B and (1.17b) goes over in the usual output equation

y=0Cz. (1.19)

Instead of the control system (1.17a) defined for a rigged Hilbert space structure we want
to consider in the following a time-invariant control system which uses only the pivot
space Zy. Note that many practically important systems with distributed parameters or
time delay can be written in this form. Assume for this that the input-output operator
T from (1.14) can be represented as convolution operator

Z/OtK(t—S)’U,(S)dS, (1.20)

where K (-) is a certain kernel called ([33]) the weighting pattern of T.
Assume that the map ¢t € Ry — L(U,Y) is twice piecewise-differentiable and satisfies the
following condition: There exists a py > 0 and a constant v > 0 such that

1K) llcwy) < ve ™, V>0, (1.21)

and
/O K@) Py + 1K () ]t < oo. (1.22)

Under these conditions we can choose a state space realization of (1.20) which was used
n [7] for the special case U =Y = R" :

Zy = WE’Z(O, 00;Y), where 0< p<py isarbitrary, (1.23)
D(A) == {&(s) € W22(0,00;Y) | / e | €(s) |2 ds < o0}, (1.24)
(A€)(s) = E&(s), VEeD(A), (1.25)
(Bn)(s) = K(s)n, VnelU, (1.26)
(C2)(s) =2(0), Vze€LZ. (1.27)
Thus we have defined a time-invariant control system
2= Az+ Bu, (1.28a)
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y=0Cz, (1.28Db)

where A from (1.25) is a closed linear operator that acts in Zj given in (1.23) and which has
the dense domain of definition D(A) from (1.24). It is clear that A is the generator of some
Co semigroup {S(¢)}+>0. The map (1.26) defines a linear bounded operator B : U — Z,.
If zo € D(A) the generalized solution z(-,zp) of (1.28a) starting in Z; is a continuous
function ¢ — z(t, z9) € Zy which can be represented in integral form as

ot 20) = S(t)z + / " S(t — ) Bu(r) dr (1.29)
with
|SE || <ae ™, Vt>0 (1.30)

where o and ¢ are positive numbers, and which satisfies for any v € L*(R,; U) the output
relation

C’/O S(t —7)Bu(r)dr = /0 K(t —7)u(r) dr. (1.31)

Note that if z(¢, z9) € D(A) for t > 0 then z(+, z) is an ordinary strong solution of (1.28a).

2 Solvability of the Riccati operator equation for the
realizations of a class of Volterra equations

Let us assume that Fy = Fy € L(Y,Y), F, € L(U,Y) and F3 = F; € L(U,U) are bounded
linear operators and introduce the bilinear form

iz, y; u,v) = (Fiz,y)y + (Fou, 2)y + (Fov, y)y + (Fau, u)y,
Ve,yeY,Vu,veU. (2.1)

A direct calculation shows that
Jj(z,y; u,v) =j(y,z; v,u), Ve,y € Y, Vu,v € U. (2.2)
Introduce the linear operator
K(u,h) (t) == (Tu) (t) + h(t) , u € L*(Ry;U), he WI(R,;Y),

and consider for 7" > 0 and a parameter v, |v| < 1, the bilinear functional

T
Jf(ua h’) = A [j(}C(U, h),’C(U, h),u,u) - V”Z(ta ha u)||$/V1’p2(R+;Y)] dta (23)

which is for p € (0, po) a continuous map L2(0,T;U) x W2(0, +00;Y) — R.
The next theorem contains a version of the operator Riccati equation. For the case
U =Y =R" this theorem was proved in [7].
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Theorem 2.1 Let x(p) be the Laplace transform of the absolutely continuous function
P, K. Suppose that Fy = F} > 0,Fy = Fy > 0, F;'" emists,

x(p) € L(U,Y),VpeC,

and
(iw) := x*(iw) Fix(iw) + 2 Re(F5 x(iw)) + F3 >0, VYw e R. (2.4)

Then there exists a sufficiently small vy > 0 such that for any v € |0, vy we have (the
index v is omitted):

1) For any h € Wif(O, +00;Y) there ezists a u(h) € L*(0,+oc; U) such that

Jo (a(h), h) < Jg (u,h),  Vue L*(0,T;U), ||u—a(h)|lr20mu) > 0.
2) There ezists a bounded self-adjoint operator

My = M3 Wif(O, +00;Y) — Wi’p?((], +00;Y)
(Mrh, B2 ooy = Jo (@(h),h), Yhe W20, +00;Y).

3) In the case T = oc the operator M := My, satisfies the following Riccati operator
equation

S(h’a g) = (Ah’ Mg)Wi‘;(O,—i—oo;Y) + (Mha Ag)Wi‘pQ(O,—l—oo;Y) - (L*ha L*g)U
+ (F1Ch,Cg)y — v(h, g)Wif(o,Jroo;Y) , Vh,g€ D(A), (2.5)
where N := \/Fy, L := (MB + C*F,)N~' € L(U,W23(0, +00;Y))
and (L*h,v)y = (hy Lv) iz 4 ooyy> V€ W (0,400;Y), Vv € U
—p b b)

Proof Let us write the functional JI (u, h) with the help of the regular representation
(1.23) — (1.28b) as

2
P

T
Jg(u, h) = /0 [(]Fluza Z)Wf (0,400;v) T 2 (Fau, Z)Wi’Z(O,—I—oo;Y) + (F3u, U)U] dt,
where z = z(t, h, u) satisfies (1.28 a),

FY = C"FiC — vy

F, ;= C*F, and C* € L(Y,W!?(0,+00;Y)) is defined by
(Ch,&)u = (0, C* oo toeyy»  YhE W0, +003Y), VEEU.

2(0,400;Y) 7

Because of (2.4) the coercivity condition for the principal quadratic part of the functional
(2.3) is satisfied. This follows from the fact that the functional (2.3) can be written as

J3 (u,h) = 77 (u,u) — 2 LT (u) + JE (0, h) (2.6)
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where

(0, 0) = /0 [G0C), K(); 1, 0) = (2(), 2(0)) w20 1ouy)]

2
p

Ly (u) := —/0 [(F{/Z(U)az(h))wb (0, 4+00;Y) T (2(h), Fou)y1, (0,—|—oo;Y)] dt . (2.7)

2 2
o p

In (2.7) we use the notation z(u) := z(¢,0,u) and z(h) := z(t, h,0).
If we denote by U7 (iw) the Fourier transform of the function Pru(-) we get by the Parseval
equation

() = 2i / " (iw)ir(iw), dr (i), do

TJ-

00 T
_ / (FK(Pru), K(Pru)), — v /0 12() 1220, oy B

T

From (1.23), (2.4) and the condition imposed on F} it follows therefore that for sufficiently
small vy > 0 we have for any real v, |v| < vy, with a number £; > 0 the inequality

T
(1) > 51/ W@ dt, Vue LX0,T:U). (2.8)
0

Hence ([18]) we get the existence and uniqueness of an element @ € L?*(0,7;U) such that

inf  JJ (u,h) = Jg (i, h). (2.9)

w€L2(0,T5U)
This @ is the unique solution in L?(0,T;U) of the Euler equation
7l (@, u) = L} (v), Yue L*0,T;U).

The Euler equation has by virtue of (2.2), (2.6), (2.7) the form

T
/0 [(FY 20(2), 2(w) w1200, 1ociyy + (B (8) Pt yy12(0 4 ooryy
+ (z(u),FQQh(t))Wi,3(0,+OO;Y) + (F3ip(t),u(t))y]dt =0, Vue L*(0,T;U), (2.10)
where Z,,(t) = z(t, h, @p), Gn(t) = @(h)(t). Thus the first assertion of the theorem is proven.
Consider now the function v(-) : [0,T) — WEf(O, +00;Y) given for t € [0,T) by

Y (t) ::/t S*(s = t)[FY Zn(s) + Fatn(s) ] ds, (2.11)

where S*(t) is the semigroup of linear bounded operators that are adjoint to S(t). It is
easy to see that

S*(t)p =T (2.12)



From (1.29), (2.11) and (2.12) it follows that for any test function £ on [0,7’) such that
£(t) € D(A) on [0,T) and £(t) € Wif(O, +00;Y) we have
T .
[ Tm0: 60030100+ 10 AE D200
+ (BY20(0) + Bain(t), €0z o) 4 (04(0).EO)y =0, (213)

Let us take in (2.13) as test function & := z(-,0,u) with v € L?(0,T;U). This is possible
according to the solutions properties of (1.28a). By transforming the obtained formula
with the use of (1.28a) and (2.10) we obtain the equality

[ B0 D01y + F20(0) + Fan), )] e =,
Vue L*0,T;U).
From this it follows that
By (t) + Fyiin(t) + F32,(t) =0, VYhe W2 (0,+00;Y), Yt e [0,T). (2.14)
Equation (2.14) shows that
in(t) = —F5 ' [B*Yn(t) + F524(t)] .

In particular it follows from this that ay(+) is continuous.
Now define the operator My : W2(0, +00;Y) — Wif(O, +00;Y) by

—p
Mrh := (0) . (2.15)
The map My is linear since it is the superposition of the linear maps
b= (fin, ) € L*(0,T;U) x WE2(0,400; Y) > 1,(0) € W22(0, +00; V).
Let us show as in [7], that for M := M, the relation
M2z, (t) =¢n(t), V>0 (2.16)

is true. For this we consider for s > 0 the parameter-dependent functional
J;’o(u,h) 5:/ [(Fluzs,ZS)Wlf(o,+oo;Y)
+ 2 (Fou, 25) 120 1 ooryy (F3u,u)y] dt, (2.17)
7p b )
where FY T, are as above and z; = z;(t, h, u) is given by
t
zs(t, hyu) = S(t — s)h+/ S(t—T7)u(r)dr.

In the same way as above we can show the existence of an optimal control 1, j solving the
minimization problem for the functional (2.17). Introduce now the associated functions

gs,h(t) = Zs (ta h7 as,h) 3

Y n(t) = /too S*(r —t) []Fl”is,h(T) + ]FQas,h(T)} dr
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As above we find a self-adjoint operator M?* satisfying
M?Z; 4(s) = s 4(s), Vge Wi’pQ(O, +00;Y),s > 0. (2.18)

Take in (2.18) the function ¢ := Z,(s). Then it follows from the fact, that the functional
does not depend explicitely on the time, that

Zsg(t) = Z0,4(t —s) = Z4(t —s) and

Dsg(t) = Pog(t = 5) -

This implies that the operator M*® from (2.18) is independent on s. From Bellman’s
principle of dynamic programming ([3]) and the optimality of @, and 4, it follows that

Zualt) = (D) Vg (6) = 0n(0), £ 5, (219)
where g = Z,(s), h € WE’,)Q(O, +00;Y).

Using now (2.19) and the independence of M* on s we get from (2.18) the property (2.16).
If we take in (2.13) the function &(t) := Z,(t) with g € D(A) and use the properties (2.2),
(2.3), (2.15) and (2.16) we obtain the equality

T
(Mrh, g)wif(o,+oo;y) = A [] (K(iin, h), K(@g, 9) ; U, ag) — v(Zn(1), gg(t))wi’ (0,+w;y)} dt

2
»
= (h Mrg)y120 1osiyy> YV hog € D(A). (2.20)
Note that equation (2.20) can be extended to the entire space Wi’pz((], +00;Y). Let us
prove this as in [18] it can be shown that if h,,, — h strongly in Wi’f(O, +00;Y) then {ay, }
converges weakly in L?(0,T;U) to iy,. From this it follows that if there are two sequences
{hm}, hm € D(A), and {gi}, gr € D(A), and two functions h, g € Wff(O, +00;Y) which
are the strong limits of the sequences {h,,} and {gi}, respectively, then by the continuity
of the functional j with respect to u it follows that

lim j(’C(ﬂ'hm: h’m)a K(ﬂgk ) gk) ; ﬂ'hma /agk)

m,k—00

= j(/C(?lh, h), K(tyg, g) ; tn, 729) :

Thus the identity (2.20) is true in Wi’z(O, +00;Y). But this implies that the linear
operator My defined on the entire Wi’pQ(O, +00;Y) is symmetric and, consequently, closed.
By the closed graph theorem it follows that the operator Mr is continuous.

Let T = oo and consider an arbitrary function A € D(A). It follows that z,(t) € D(A)
for all ¢ > 0 and, using the continuity of u(-), that AZ,(-) : (0,00) — Wif(O, +00;Y) is
continuous. Thus we have the relation

/O (A% + B, M)y sy + (s ME) o s iy]

2
P

— (h, Mg(o))wifm&oo;Y) =0,
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which we can add to (2.13). If we use (2.14), (2.16) and the symmetry of M we obtain
the relation

| sta.eana=0, vige p(a),é W0, 400 7).
0

Since € and h can be taken arbitrary in the associated spaces, we obtain the identity (2.5).
[

Corollary 2.1 Suppose that for (1.20) and the associated state-space realization (1.28a),
(1.28b) the conditions of Theorem 2.1 are satisfied. Then for sufficiently small v > 0,
any h € D(A) and any continuous function u € L?*(0,00;U) the pair (2(-),y(:)), where
z(+) = z(+, h,u) is the solution of (1.28a) with z(0, h,u) = h and y(-) = Cz(-), satisfy for
t > 0 the relation

%(MZ(t), 2B w20 p00ry = | L72(t) + Nu(t) [l
= [(Fy(®), y(@)y + 2 (Fu(®),y(6)y + (Fsu(t), w(t)o] = v 2(0) 5120 4oy - (221)

Here M = M*,L and N are the operators from part 8) of Theorem 2.1.

Proof Since h € D(A) we can assume that z(-) is a strong solution of (1.28a). Thus we
can write, using the equation (2.5),

S M(8), 202000 = 2 F2(8), 2020

= 2 (M2(t), A2(8)) 120, ey + 2 (M2(0), Bul®)) 1206 4oy
= 2(M (t)’Bu(t))le(O—i—ooY + L 2(t) 17 — (FC2(t), Cz(t)y + vl 2(t) |I§V;pz(0,+oo;y)-
(2.22)

Now we use again (2.5) to get the expression

(L*z(t) + Nu(t), L*2(t) + Nu(t))y = (L*2(t), L*2(t))v
+ 2(Mz(t), B“(t))wif(o,Jroo;Y) + 2 (C*Fyul(t), Z(t))wif(o,+oo;Y) + (Fyu(t), u(t))y -
(2.23)

Putting now ||L*z(t) ||% from (2.23) into (2.22) the formula (2.21) follows immediately. B

3 Stability and instability of infinite-dimensional Volterra

equations by their state-space realizations

Consider the Volterra integral equation
t
+ [ K=o dr, (3.1)
0

11



where K (t) € L(U,Y)(U,Y Hilbert spaces ) is twice piecewise-differentiable satisfies (1.21)
and (1.22), and has therefore a state-space realization (1.23) - (1.28b). Suppose that

p: Y xRy = U (3.2)

is a continuous function.

Instead of one fixed nonlinearity ¢ we consider a family N of continuous maps (3.2), such
that for any ¢ € N and any h € D(A) with D(A) from (1.24) the nonlinear integral
equation (3.1) has a unique solution y(-, h, ) and this solution is continuous. Suppose
also that there are linear bounded operators G; = G5 € L(Y,Y),G; < 0,G, € L(U,Y)
and Gs = G € L(U,U),G3 < 0,G3 " exists, such that for any ¢ € N we have

(Gly: y)Y + 2 (GQQD(ya t): y)Y + (G3S0(y7 t)a @(y: t))U > 07 Vi > 07 vy €Y. (33)

Now we consider together with the state-space equation (1.28 a), (1.28 b) and the non-
linearity ¢ € N the nonlinear evolution system

z2=Az+ Bop(y,t),y=Cxz. (3.4)

From the uniqueness of continuous solutions for (3.1), (3.2) with A € D(A) it follows
immediately, since (3.1) is the integral representation of (3.4), that (3.4) has for any ¢ € N/
and any initial function A € D(A) a unique solution z(-, h, ¢) on Ry with z(0, h, ¢) = h.
In the next theorem we show the connection between solutions of the integral equation
(3.1) and the solutions of the associated state-space realizations (3.4).

Theorem 3.1 Suppose that the following conditions are satisfied:

a) Let x(-) be the Laplace transform of PooK and let with the operators Fy = —G1,
Fy = -G, and F3 = —G3 from (3.3) the frequency-domain condition (2.4) be true;

b) For any h € W22(0,400;Y) and ¢ € N the solution y(-) = y(-, h, ) of (3.1) ezists
and 18 continuous.

Then for any h € Wif(O, +00;Y) and ¢ € N the solution z(-) = z(-, h,¢) of (8.4)
with the initial condition z(0) = h erists and there are a bounded linear self-adjoint
operator P : Wif(O,-ﬁ-oo; Y) — i’pQ(O, +00;Y) and a constant § > 0 such that for any
t1,t9 > 0,11 < to, we have:

to

(PZ(t, h, SO), Z(t, h; SD))W}[JZ(OrFOO;Y) t <

t2
=6 [ ettt b2 DI+ 1205 0) s ) e, Vo €N, YhE D).
(3.5)

Proof Let us assume for a moment that the kernel K (-) satisfies the conditions from
Section 2 and h € D(A). Introduce the continuous function u(t) := ¢(y(t, h, ), t) for

12



t > 0. With this function we can applicate Corollary 2.1. The integration of (2.21) on an
arbitrary time interval 0 < ¢; < to with P := —M and F; := —G;,i =1, 2,3, gives

t2
(PZ(t, ha ()0)7 Z(ta ha (p))Wi’pz(O,—koo;Y) t

< /2 [(Gly(t: h: @):y(ta h’a (p))y + 2(G2u(t)ay(ta ha QD)Y

t1
to
+ Gault) u®)o] dt = v [ 1201, 0) P (3.6)

It follows from (1.31) and the boundedness of the operator P that the left- and right-hand
side of (3.6) depend continuously on h € Wi’,?((), +o0;Y) and K € L(U,Y).

From this and the denseness of D(A) in Wif(o, +o0;Y) it follows that the inequality
(3.6) can be continued for functions h € Wif(O, +o0;Y).

Since the inequality (2.4) is strictly we can get a similar inequality (3.6) with G5 = G3—8.1
where 0; > 0 is sufficiently small. This modified inequality (3.6) and (3.3) immediately
give (3.5). [

In order to describe the absolute stability or instability behaviour of (3.1) with the help of
the state-space realization (3.4) we need an additional assumption on the class V. Let us
assume that there is a linear bounded operator R : Y — U such that the “nonlinearity”
¢ = Ry belongs to N.

Theorem 3.2 Suppose that x(-) is the Laplace transform of P K and the operator func-
tion (I — x(p)R)™" has poles in the right half-plane and the frequency-domain condition
(2.4) is satisfied with F; = —G;,i = 1,2,3. Then there ezists a bounded linear self-adjoint
operator

P: Wi’p?((], +o00;Y) — WE’,?(O, +00;Y) such that
C = {h € W50, +00; Y) | (Ph, h) w20 400ry < 0}

is a quadratic cone C & () in Wif(O, +00;Y) with the following properties:
a) There exists a constant 3 > 0 such that for any h € C and any p € N

t
lim 4" / 1o y(s, by ), 8) I3 ds = oo (3.7)

t—o0

b) Any solution y (-, h, p) of (8.1) which does not satisfy (3.7) has the property
fooo | o(y(s, h, ), s)||}ds < oo and, consequently,

oy, h,©),-) € L*(0,00;U) and y(-, h,¢) € L*(0,00;Y). (3.8)

Proof Let us show that C ¢ (). Assume the contrary, i.e. assume that
(Ph, h)Wi,pz(O,Jroo;Y) >0,Vhe Wi’f(O, +00;Y). From (3.6) we obtain for any

t>0,any h € Wif((),—i—oo; Y) and ¢ € N that
(PZ(ta h’a (p)a Z(ta ha @))Wi’f(O,—l—oo;Y) < (PZO’ ZO)Wi’g(O,—l—oo;Y)

5 / | o(y(s, b o), ) I3 dt (3.9)
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It follows that o(y(-, b, ¢), ) € L?(0,00;U), Vh € W1H(0,+00;Y), Vi € N. But the
last property is 1mp0551b1e since by assumption for the nonlinearity ¢ := Ry € N there
exists a h € W' (0 +00;Y) such that @(j(-, h, 3) = Ri(-, h, Ry) does not belong to
L*(0,00; U).

Thus C ¢ (). Suppose h € C. Consider for arbitrary ¢ € N the function

V(t) := (=Pz(t, h, @), z(t, h, )y 2(0, 400" It follows from (3.9) and the boundedness of

the operator —P that there exists a > (0 such that
V(t)—-AV(t) >0, Vt>0. (3.10)

The integration of (3.10) on [0, ¢] gives the inequality
V(t)>eMV(0), Vt>0. (3.11)

It follows that for any 3 € (0, ) the property V (t)e#* — +oo for t — 400 holds. From
the boundedness of P we conclude that there are constants ¢; > 0, co > 0 such that

V(t) < Cl” Z(t, h’: QO) ||$/V1’p2(0,—|—oo;Y)

and
120620 ) By oy < /mw (5,1 0),5) [ ds, VE> 0.

Suppose that (Ph, h)y 2(0,ooy) 2 >0, VheW(0,400;Y). Then it follows from (3.9)

that on an arbitrary time interval [0,t] we have

5/‘nw (5. 0), )+ 1t s @)y o)
<V(0) - V(t) < V(0).

But this implies that ¢(y(-, h, ¢), ) € L?(0,00,U).
|

4 PDE’s with boundary control and ODE’s with de-
lay as realizations of the same Volterra equation

Let us investigate the question how to suppress vibrations in a fluid conveying tube. We
consider for this a system of equations which is described in [8, 15, 19, 23, 27].
The motion of an incompressible fluid is given for £ > 0 in the acoustic approximation by

ov ow ow ov

=0 5 =0,
L or’ ot ‘oz’

ot

where a; and ay are positive parameters, v denotes the relative velocity of the fluid and
w denotes the pressure. The boundary conditions are given for ¢ > 0 by

€ (0,1), (4.1)

wit) =0, (Su(t,0) ~v(5,0)) = ~u (), (4.2)
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where u(-) is a function (“boundary control”) which describes the relative displacement
of the piston of a servomotor. The equation of the turbine for ¢ > 0 is

U o) = ult) + S w(0,1). (4.3)

T, —
dt 2

Here q denotes the relative angular speed of the turbine, 7} is a positive parameter. The

regulator is described by the equation
d*¢ d¢ :

T? -2 4+ T, —>+6C+k t)=0, 4.4

v T Doy + 00+ ke(C) +a(?) (4.4)

where ( represents the displacement of the clutch of the regulator and 7;.,7y,0 and k

are positive parameters. The friction term is given by a continuous function ¢ : R — R
defined through a parameter x > 0 by

1 if y>«k,
ely) =% Ly if ye(—k,k),
-1 if y<-—k,
and thus satisfying the property
ey)y>0, VyeR. (4.5)
The equation of the servomotor is
du
T, — =n(t), 4.6
= () (46)

where 7T is a positive parameter and 7 denotes the displacement of the slide value. The
last condition is for £ > 0 and with a positive parameter (3

n(t) — ¢(t) + Bu(t) = 0. (4.7)

A direct computation shows ([15, 27]) that the transfer function of the linear part of (4.1)
— (4.7) which connects the (formal) Laplace transforms of —¢ and ( is given by

. 2 (Tup+1) (Tip + B) (sinh pr + o cosh pr)
(T2p? + Tip + 6) Q(p) + R(p) ’

x(p) = (4.8)

where

a:2‘/ﬂ, T =1/\/aa, , (4.8a)
a2

Q(p) = (Tsp+ B) (Tup + 1)(acosh pr + sinh pr) |
R(p) = 2cosh pr — 2sinh pr.

Note that x(p) can be written with some ¢ > 0 as

x(p) +x1(p) - (4.9)

- T?p+c
15



where

k(c—T) pQ(p) — 6Q(p) — R(p)
(T?p+c)P(p) '

xi(p) = (4.10)

The representation (4.10) shows that x;(p) is analytic in some halfplane {Rep > —¢}
with € > 0. From this it follows that x;(p) has a Laplace original K (¢) which is absolute
continuous, satisfies the inequalities

| K1(t) | < const e~ (4.11)

with some gy > 0 and such that K; and K; belong to L?(0,00;R). Since first part of
(4.9) has the Laplace original %e*Ct/Tg the whole original of x(p) can be represented as

K (t) = Ki(t) + £e/T_ It is shown in [15, 27] that any solution component y(t) := ¢(t)
from (4.4) can be written as

y(t) = h(t) + / K(t - 1)oly(r)) dr, (4.12)

where again h is absolute continuous, satisfies an inequality of type (4.11) and h, h belong
to L?(0, oo; R).
The quadratic contraints (3.3) can be described in Y = U = R by the inequality

oy) (y—re(y) >0, VyeR, (4.13)

i.e., (3.3) is satisfied with G; = 0,G5 = 5 and G3 = —k < 0.
Using the transfer function (4.9) and the constraints (4.13) we can verify the frequency-
domain condition (2.4). A direct computation shows (see [27, 15]) that if

55
Ti(a? — 1)8? < (— + a2> (BT, +T,) (4.14)
32
is satisfied and then the condition
o(Tyf? — (BT, +T,)) > 378. (4.15)

is necessary and sufficient for the frequency-domain condition (2.4). The stability and
instability domains of the denominator of x(p) where investigated in [19] and characterized
in the (T, T?)-plane by domains Qg and Quug, respectively. It follows now from Theorem
3.1 that under the conditions (4.13) - (4.15) for parameters from Qg the solutions of the
integral equation (4.12) have the properties described by Theorem 3.1.

In the special case a; = as =: a > 0 equation (4.1) is the wave equation % = aQ% and
condition (4.15) is satisfied if Ty 3% — (8T, + Ts) # 0 and
a> 35

-2 (Tkﬂ2 - (/3 Ta + Ts)) ’

i.e. if the speed of sound a is sufficiently large.
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The hybrid system (4.1) — (4.7) consisting of a hyperbolic PDE and ODE’s is one of the
possible realizations of the input-output process given by the Volterra integral equation
(4.12) with the class of nonlinearities described by (4.5) and a class of kernels character-
ized by their Laplace transforms (4.9). Let us show that we can also choose a realization
for (4.12), (4.5), (4.9) in the form of a hybrid system consisting of an ODE with delay
and algebraic equations with delay. Note that such a realization has some advantages in
practice. Using such a delay system with the same stability properties as the PDE realiza-
tion we can reduce the amount for computation and stability analysis. In synchronization
theory the introduction of delay interactions instead of wave interactions is demonstrated
in [24].

Introduce in (4.1) with « from (4.8a) the new functions

v=v—af2w and W:=v+a/2w. (4.16)

A straightforward computation shows that these functions satisfy the relations

ov 1 0v ow 10w
== 4.1
8t+T8 =0, 3¢ 7 o2 0, z€(0,1),t>0, (4.17)

where 7 is again given by (4.8a).
The new boundary conditions can be written for ¢ > 0 as

(t,0) + on@(t,0) = 14 () (4.18)

with
o = Z:Li . ()= 12+aau(t), (4.19)

and
o(t,1) + w(t,1) = 0. (4.20)

The ODE’s (4.3), (4.4), (4.6) together with the algebraic relation (4.7) transform into the
system

G(t) = —qq(t) + 7ult) — 572000,1) + 5750(0,1),

C.(t) = o), ’ (4.21)
Ot) = —ga(t) — 7 Ct) — 750(t) — e(O()),

at) = £(@) - Lu(t)

Note that the hybrid system (4.17) - (4.21) is a special case of the system (2.1) considered
in [23] with

T(A) = %, a; and v (t) from (4.19), 1,(t) =0, 1 =B =0, )

v(t) = O(), ae=-1,c=(0,0,1,0),

= (ooo,fTa),cT:(o,o,o,O), | .
o = (= 552,0,0,0), 8% = (545,0,0,0),

b, = (0,0,0,0), bT, = (0,0,0,0),

= (0,0,4,0), J
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1
-7 0 0 &
o o0 1 0
A= ., L. (4.23)
72 A TTE TT3
1 B
o0 7 0 -7

Using the functions, vectors and matrices given by (4.22), (4.23) we define the hybrid
system consisting of an ODE with delay and an algebraic relation with delay by

= (A+buc])z(t) + (bra — nbir) ma (t — 7) — b (y(2))

) = o 2(t) —arm(t —7),
) = nl(t_T)a

(4.24)

= gz (t).

Note that in the case a; = as =: @ > 0 in (4.1) the speed of sound a defines the delay
time 7 = £ in (4.24). A direct computation shows that the transfer function of the linear
part of (4.24) coincides with the function x(p) given by (4.9), (4.10). From the results in
(23], § 16, it follows that system (4.24) can be written as Volterra integral equation (4.12)
with forcing function A(t) and kernel K(¢) computed in [23], § 16. Thus we can consider
equation (4.24) as a further realization of the input-output process represented by the
Volterra integral equation (4.12). It follows by Theorem 3.1 that system (4.24) has the
same stability properties as the first realization of (4.12), given by (4.1) — (4.7).
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