Fachrichtung Mathematik,
Institut für Analysis, TU Dresden
DFG-SPP: DYNAMIK (DANSE)
Im Seminar
Dynamische Systeme
dienstags, 15.00-16.30 Uhr,
Seminarraum 3 des Max-Planck-Instituts für
Physik komplexer Systeme (MPIPKS),
Nöthnitzerstr. 38, 01187 Dresden
findet am
20.6.2000
der folgende Vortrag statt:
Dr. Stefan Siegmund, Universität Augsburg
"Spectral Theory for Nonautonomous Differential
Equations"
Alle Interessenten sind herzlich eingeladen.
Abstract : For nonautonomous linear differential equations dx/dt = A(t)x with locally integrable A : R -> R^(N × N) the so-called dichotomy spectrum is introduced. As the closely related Sacker-Sell spectrum for skew-product flows this new spectrum consists of at most N closed intervals, which in contrast to the Sacker-Sell spectrum may be unbounded. In the constant coefficients case these intervals reduce to the real parts of the eigenvalues of A. In any case the spectral intervals are associated with spectral manifolds (vector bundles over R comprising solutions with a common exponential growth rate. The main result is a spectral theorem which describes all possible forms of the dichotomy spectrum.
gez.: