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Abstract— We consider a control problem for the heating
process of an elastic plate. The heat flux within the plate
is modeled by the heat equation with nonlinear Neumann
boundary conditions according to Newton’s law. As input at
a part of the boundary we take the nonlinearly transformed
and modulated heat production of a separate heater which is
given by a nonlinear Duffing-type ODE. This ODE depends
on measurements of the temperature within the plate and on
Bohr resp. Stepanov almost periodic in time forcing terms.
The physical problem is generalized to a bifurcation problem
for non-autonomous evolution systems in rigged Hilbert spaces.
Using Lyapunov functionals, invariant cones and monotonicity
properties of the nonlinearities in certain Sobolev spaces, we
derive frequency domain conditions for the existence and
uniqueness of an asymptotically stable and almost periodic in
time temperature field.

I. INTRODUCTION

Let us introduce some function spaces. We follow the rep-
resentation in [10]. Suppose (E, ‖ · ‖E) is a Banach space.
If J ⊂ R is an interval, denote by C(J ;E) the space of
all continuous functions from J to E, endowed with the
topology of uniform convergence on compact sets. If J = R

or J = R+ the space Cb(J ;E) is the subspace of C(J ;E)
of bounded functions equipped with the norm

‖f‖Cb
:= sup

u∈J
‖f(u)‖E .

The Banach space of Stepanov bounded on J = R or J =
R+ functions (of exponent p = 2) is the space BS2(J ;E)
which consists of all functions f ∈ L2

loc(J ;E) having finite
norm

‖f‖2
S2 := sup

t∈J

∫ t+1

t

‖f(τ)‖2
E dτ .

A subset S ⊂ R is relatively dense if there is a compact
interval K ⊂ R such that (s +K) ∩ S �= ∅ for all s ∈ R. A
function f ∈ Cb(R ;E) is said to be Bohr almost periodic if
for any ε > 0 the set

{τ ∈ R | sup
s∈R

‖f(s + τ) − f(s)‖ ≤ ε}

of ε-almost periods is relatively dense in R.
For a function f ∈ L2

loc(R;E), put

f b(t) := f(t + w), w ∈ [0, 1], t ∈ R .

The function f b(t) is regarded as a function with values in
the space L2(0, 1;E). Then

BS2(R;E) = {f ∈ L2
loc(R;E)|f b ∈ L∞(R;L2(0, 1;E))}

and, moreover, ‖f‖S2 = ‖f b‖L∞ .

A function f ∈ BS2(R;E) is called an almost periodic
function in the sense of Stepanov and of exponent 2 (abbre-
viated S2-a.p.) if f b ∈ CAP(R;L2(0, 1;E)). In this case the
ε-almost periods of f b are called the ε-almost periods of f .
The space of S2-a.p. functions with values in E is denoted
by S2(R;E). Obviously, CAP (R;E) ⊂ S2(R;E).

II. CONTROL SYSTEMS IN LUR’E FORM WITH A DUFFING
TYPE NONLINEARITY

Let V1 ⊂ V0 ⊂ V−1 be a Gelfand rigging of the real Hilbert
space V0, i.e. a chain of Hilbert spaces with dense and
continuous inclusions. Denote by (·, ·)Vj

and ‖ · ‖Vj
, j =

1, 0,−1, the scalar product resp. norm in Vj(j = 1, 0,−1)
and by (·, ·)V−1,V1 the pairing between V−1 and V1.
Let A0 ∈ L(V1,V−1) be a linear operator, b0 ∈ V−1

a generalized vector, c0 ∈ V0 a vector and d0 < 0 a
number. According to the vectors c0 and b0 we introduce
the linear operators C0 ∈ L(V0, R) and B0 ∈ L(R,V−1) by
C0ν = (c0, ν)V0 , ∀ ν ∈ V0, and B0ξ := ξb0, ∀ξ ∈ R.
Assume that φ : R × R → R and g : R → R are two scalar-
valued functions. Our aim is to study a system of indirect
control, which is formally given as

ν̇ = A0ν + b0[φ(t, z) + g(t)] ,
ż = (c0, ν)V0 + d0[φ(t, z) + g(t)] . (1)

Let us demonstrate how (1) can be written as a standard
control system. Consider for this the Gelfand rigging Y1 ⊂
Y0 ⊂ Y−1, in which

Yj := Vj × R , j = 1, 0,−1 . (2)

The scalar product (·, ·)j in Yj is introduced as(
(ν1, z1), (ν2, z2)

)
j

:= (ν1, ν2)Vj
+ z1z2, where

(ν1, z1), (ν2, z2) ∈ Yj are arbitrary. The pairing between
Y−1 and Y1 is defined for (h, ξ) ∈ V−1 × R = Y−1 and
(ν, ς) ∈ V1 × R = Y1 through

((h, ξ), (ν, ς))−1,1 := (h, ν)V−1,V1 + ξ ς . (3)



Let b :=
[

b0
d0

]
∈ Y−1 and c :=

[
0
1

] ∈ Y0 . Suppose further that
the operators C ∈ L(Y0, R) and B ∈ L(R, Y−1) are given
as

Cy = (c, y)0 , ∀ y ∈ Y0 , Bξ = ξb , ∀ ξ ∈ R ,

and the operator A ∈ L(Y1, Y−1) is defined as

A :=
[
A0 0
C0 0

]
.

Consider now the system

ẏ = Ay + B [φ(t, z) + g(t)] , z = Cy , (4)

which is equivalent to (1) through y = (ν, z). If −∞ ≤ T1 <
T2 ≤ +∞ are arbitrary, we define the norm for Bochner
measurable functions in L2(T1, T2;Yj), j = 1, 0,−1, by

‖y‖2,j :=

(∫ T2

T1

‖y(t)‖2
j dt

)1/2

. (5)

Let W(T1, T2;Y1, Y−1) be the space of functions y such that
y ∈ L2(T1, T2;Y1) and ẏ ∈ L2(T1, T2;Y−1), equipped with
the norm

‖y‖W(T1,T2;Y1,Y−1) :=
(‖y‖2

2,−1 + ‖ẏ‖2
2,−1

)1/2
. (6)

Let us introduce the following assumptions (A1) – (A6)
about the operator A0 ∈ L(V1,V−1), the vectors b0 ∈ V−1

and c0 ∈ V0, and the functions φ and g.

(A1) For any T > 0 and any (f1, f2) ∈ L2(0, T ;V−1 × R)
the problem

ν̇ = A0ν + f1(t) , (7)
ż = (c0, ν)V0 + f2(t) , (ν(0), z(0)) = (ν0, z0)

is well-posed, i.e. for arbitrary (ν0, z0) ∈ Y0, (f1, f2) ∈
L2(0, T ;V−1 × R) there exists a unique solution (ν, z) ∈
W(0, T ;Y1, Y−1) satisfying (7) in a variational sense and
depending continuously on the initial data, i.e.

‖(ν, z)‖2
W(0,T ;Y1,Y−1)

≤
k1‖(ν0, z0)‖2

V0×R
+ k2‖(f1, f2)‖2

2,−1 , (8)

where k1 > 0 and k2 > 0 are some constants .

(A2) There is a λ > 0 such that A0 + λI is a Hurwitz
operator .

(A3) For any T > 0, (ν0, z0) ∈ V1 × R, (ν̃0, z̃0) ∈ V1 × R

and (f1, f2) ∈ L2(0, T ;V1 × R) the solution of the direct
problem (7) and the solution of the adjoint problem

˙̃ν = −(A+
0 + λ I)ν̃ + f1(t)

˙̃z = −C+
0 z̃ − λ z̃ + f2(t) (9)

are strongly continuous in t in the norm of V1 × R .

(A4) The pair (A0, b0) is L2-controllable, i.e. for arbitrary
ν0 ∈ V0 there exists a control ξ (·) ∈ L2(0,∞; R) such that
the problem

ν̇ = A0ν + b0ξ , ν(0) = ν0

is well-posed in the variational sense on (0,∞) .

Introduce by (c denotes the complexification)

χ(p) =
(
cc
0, (A

c
0 − pIc)−1 bc

0

)
V0

, p ∈ ρ(Ac
0)

the transfer function of the triple (Ac
0, b

c
0, c

c
0) .

(A5) Suppose λ > 0 and κ1 > 0 are parameters, where λ is
from (A2). Then:

a) λd0 + Re (−iω − λ)χ(iω − λ)+

κ1 |χ(iω − λ) − d0 |2 ≤ 0 , ∀ω ≥ 0 . (10)

(A6) The function φ : R×R → R is continuous and φ(t, 0) =
0, ∀ t ∈ R. The function g : R → R belongs to L2

loc(R ; R).
There are numbers κ1 > 0 (from (A5)), 0 ≤ κ2 < κ3 <
+∞, β1 < β2 and ζ2 < ζ1 such that:

a) β1 < g(t) < β2 , (11)

for a.a. t from an arbitrary compact time interval ;

b) (φ(t, z) + βi)(z − ζi) ≤ κ1(z − ζi)2, i = 1, 2 ,

∀ t ∈ R, ∀ z ∈ [ζ2, ζ1] ; (11a)

c) κ2(z1 − z2)2 ≤ (φ(t, z1) − φ(t, z2))(z1 − z2) ≤
κ3(z1−z2)2 , ∀ t ∈ R, ∀ z1, z2 ∈ [ζ2, ζ1] . (11b)

We assume in the next theorem that the solutions of (1) are
for every T > 0 elements of the space W(0, T ;Y1, Y−1).
Then we show the existence of solutions with initial states
from a certain set.

Theorem 1: Assume that for system (1) the hypotheses (A1)
– (A6) are satisfied. Then there exists a closed, positively
invariant and convex set G such that

{(ν, z) ∈ V1 × R | ν = 0, z ∈ [ζ2, ζ1]} ⊂ G ⊂
{(ν, z) ∈ V1 × R | z ∈ [ζ2, ζ1]} . (12)

In order to prove this Theorem we need some auxilary
results.
Suppose that Y1 ⊂ Y0 ⊂ Y−1 is a Gelfand rigging of Y0,
‖·‖j , (·, ·)j are the corresponding norms and scalar products,
respectively, and (·, ·)−1,1 is the pairing between Y−1 and Y1.
Consider the linear system

ẏ = Ay , z = (c, y)0 , (13)

where A ∈ L(Y1, Y−1) and c ∈ Y0.
Assume that for each y0 ∈ Y0 there exists a unique solution
y(·, y0) of (13) in W(0,∞) satisfying y(0, y0) = y0. In the
sequel we need the following assumption ([2]).

(A7) The space Y0 can be decomposed as Y0 = Y +
0 ⊕ Y −

0

such that the following holds:
a) For each y0 ∈ Y +

0 we have lim
t→∞ y(t, y0) = 0.

For each y0 ∈ Y −
0 there exists a unique solution

y−(t) = y(t, y0) of (13), defined on (−∞, 0), such



that lim
t→−∞ y−(t) = 0 and (c, y(t, y0))0 = 0, ∀ t ≥ 0 ,

if and only if y0 = 0.
b) For each y0 ∈ Y +

0 the equality (c, y(t, y0))0 = 0,
∀ t ≤ 0, holds if and only if y0 = 0 . For each y0 ∈ Y −

0

the equality (c, y(t, y0))0 = 0, ∀ t ≤ 0, holds if and
only if y0 = 0 .

Remark 1: Assumption (A7) a) means that we assume for
the linear system (13) the decomposition of Y0 in y = 0 into
a stable subspace Es ≡ Y +

0 and an unstable subspace Eu ≡
Y −

0 . Assumption (A7) b) characterizes the identifiability in
the sense of Kalman of the pair (A, c) on Y +

0 and Y −
0 ,

respectively.

In the following L ≥ 0 for a linear operator L ∈ L(Y ), Y a
Hilbert space, means that L is positive, i.e. (y, Ly)Y > 0,
∀ y ∈ Y \{0}; L ≤ 0 means that −L is positive.

Lemma 1: Suppose that system (13) satisfies (A7) and there
exists a linear continuous operator P : Y0 → Y0, P

∗ = P ,
such that for any s ≤ t and any solution y(·, y0) of (13) we
have with V (y) := (y, Py)0, y ∈ Y0,

V (y(t, y0)) − V (y(s, y0)) ≤ −
∫ t

s

(c, y(τ, y0))20 dτ . (14)

Then

P|Y +
0

≥ 0 , i.e. , (y, Py)0 > 0 for all y ∈ Y +
0 \{0}

(15)
and

P|Y −
0

≤ 0 , i.e. , (y, Py)0 < 0 for all y ∈ Y −
0 \{0} .

(16)

Proof: Let y0 ∈ Y +
0 \{0}. Then by (A7) a) we have

limt→∞ y(t, y0) = 0 and, due to the boundedness of P ,
limt→∞ V (y(t, y0)) = 0. It follows from (14) for s = 0 and
t → ∞ that

−V (y0) ≤ −
∫ ∞

0

(c, y(τ, y0))20 dτ . (17)

Using again (A7) a), we conclude from (17) that

V (y0) ≥
∫ ∞

0

(c, y(τ, y0))20 dτ > 0 .

Thus (15) is shown.
Let now y0 ∈ Y −

0 \{0}. Then by (A7) b) we have
limt→−∞ y(t, y0) = 0 and, consequently,
limt→−∞ V (y(t, y0)) = 0. If we take in (14) s → −∞ and
t → 0, we receive

V (y0) ≤ −
∫ 0

−∞
(c, y(τ, y0))20 dτ . (18)

Assumption (A1) b) implies that
∫ 0

−∞(c, y(τ, y0))20 dτ > 0.
Thus we conclude from (18) that V (y0) < 0. This proves
(16).

The next lemma is concerned with the separation of quadratic
cones by special functionals. Let us recall some definitions.
Assume that Y is a Hilbert space with scalar product (·, ·).

A cone in Y is a set C ⊂ Y, C �= ∅, such that y ∈ C, α ∈ R+

imply that αy ∈ C. It is easy to see that a cone C in Y is
convex if and only if y1, y2 ∈ C imply that y1 + y2 ∈ C.
Suppose that P ∈ L(Y ), P = P ∗. Then the set C := {y ∈
Y | (y, Py) ≤ 0} is a cone which is called by us quadratic.
Assume that there is a decomposition Y = Y + ⊕ Y − such
that P|Y + ≥ 0 and P|Y − ≤ 0. Then the quadratic cone
{y ∈ Y | (y, Py) ≤ 0} is called by us quadratic cone of
dimension dim Y −.

Lemma 2: Suppose that:
1) Y1 ⊂ Y0 ⊂ Y−1 is a Gelfand rigging of the Hilbert

space Y0 with scalar products (·, ·)i, corresponding
norms ‖ ·‖i, i = 1, 0,−1, and pairing (·, ·)−1, between
Y−1 and Y1;

2) There is an operator P ∈ L(Y−1, Y0)∩L(Y0, Y1), self-
adjoint and positive in Y0 such that

C := {y ∈ Y0 | (y, Py)0 ≤ 0}
is an 1-dimensional quadratic cone;

3) There are vectors h ∈ Y−1 and r ∈ Y0 such that

2 (h, Py)−1,1 = (r, y)0 , ∀ y ∈ Y1 (19)
and (h, r)−1,1 < 0 . (20)

Then we have

int C ∩ {y ∈ Y1 | (y, r)0 = 0} = ∅ . (21)

Proof: Suppose that (21) is not true, i.e., assume that
there is a y0 ∈ Y1, y0 �= 0, such that

(y0, Py0)0 < 0 and (y0, r)0 = 0 . (22)

Since C is a cone, we have αy0 ∈ C, ∀α ∈ R, and

span{y0}\{0} ⊂ int C . (23)

Since the inclusions Y1 ⊂ Y0 ⊂ Y−1 are dense, there exists a
sequence {hn}∞n=1, hn ∈ Y1 (n = 1, 2, . . .) such that hn →
h for n → ∞ in the norm of Y−1.
Because of (19) we have

2 (hn, Phn)0 → (r, hn)0 for n → ∞ . (24)

Since (·, ·)−1,1 is the unique extension by continuity of the
scalar product (·, ·)0 defined on Y0×Y1, it follows from (20)
that there are numbers ε0 > 0 and n0 ∈ N such that

(r, hn)0 ≤ −ε0 < 0 , ∀n ≥ n0 . (25)

Thus for each ε1 ∈ (0, ε0) there is an n1 ∈ N such that

4 (hn, Phn)0 ≤ −ε′1 , ∀n ≥ n1 , (26)

where ε′1 := ν − ε1 .
From (19) we conclude that 2 (hn, Py0)0 → (r, y0)0 = 0 for
n → ∞. Thus we have for each ε2 > 0 a number n2 ∈ N

such that

2 | (hn, Py0)0 | < ε2 , ∀n ≥ n2 . (27)

Take now n̄ := max{n0, n1, n2}. Then the properties (24)
– (27) are satisfied for n ≥ n̄. By (22) and the inequality



(ε0−ε1) > 0, we can choose the number ε2 in (27) so small
that

−(y0, Py0)0 (ε0 − ε1) − ε2
2 > 0 . (28)

Let us show now that the plane Π := {αy0 + β 2hn̄ |α, β ∈
R}, with exception of the point 0, is contained in int C. This
will be a contradiction to assumption 2) of the theorem if
we show that dim Π = 2. Suppose that this is not the case.
This means that there is a α0 �= 0 such that

α0y0 = hn̄ . (29)

It follows from (25) and (29) that (r, hn̄)0 < 0, and from
(22) and (30) that (r, hn̄)0 = 0. This contradiction shows
that dim Π = 2. It remains to demonstrate that Π\ {0} ⊂
int C. Consider for arbitrary α, β ∈ R with α2+ β2 >0 the
expression(

αy0 + β 2hn̄, P (αy0 + β 2hn̄)
)
0

= α2(y0, Py0)0 + 4αβ (hn̄, Py0)0 + β 24(hn̄, Phn̄)0 .
(30)

Under our conditions the quadratic form (30) is negative
definite. Really, from (22) we have (y0, Py0)0 < 0 and from
(26) 4 (h n̄, Ph n̄)0 < 0. Thus by the Routh criterion the
negative definiteness of the form is shown if the determinant
D, associated to this form, is positive. The straight forward
computation of D and the use of (26) – (28) gives the
estimates

D = (y0, P y0)0 4 (h n̄, Ph n̄)0 − (4h n̄, Py0)20
≥ −(y0, Py0)0(ε0 − ε1) − ε2

2 > 0 .

Remark 2: Lemma 2 can be considered as generalized
lemma about the separation of cones ([1], [3], [8], [12]).
Really, in the finite-dimensional case we have Y1 = Y0 =
Y−1 = R

n, (·, ·)−1,1 = (·, ·)0 = (·, ·) the Euclidean inner
product and P = P ∗, det P �= 0, a regular symmetric n×n
matrix. Assumption (19) in Lemma 2 states that there are
vectors h, r ∈ R

n such that

2 (h, Py) = (r, y) , ∀ y ∈ R
n . (31)

It follows from (31) that

2h = P−1r . (32)

Equation (32) shows that assumption (20) of Lemma 2 takes
the form

(r, P−1r) < 0 . (33)

If (33) is satisfied, it follows from Lemma 2 for the 1-
dimensional quadratic cone C = {y ∈ R

n|(y, Py) ≤ 0}
that

int C ∩ {y ∈ R
n | (y, r) = 0} = ∅ . (34)

But this is exactly the sufficient part of the statement in [3].

Now we prove for (1) the existence of solutions in
W(0, T ;V1 × R,V−1 × R) and the existence of at least one
solution in Cb(R;V0×R)∩BS2(R ;V1×R). We need for this

the a priori inclusion given by Theorem 1 and two additional
assumptions.

(A8) The imbedding V1 ⊂ V0 is compact.

(A9) The family of operators {A(t)}t∈R,A(t) : Y1 → Y−1,
given by A(t)η := −Aη − Bφ(t, Cη),∀t ∈ R,∀η ∈ Y1, is
monotone on the segment {η ∈ Y1 |Cη ∈ [ζ2, ζ1]}, i.e. for
any t ∈ R we have

(A(t)η −A(t)ϑ, η − ϑ)−1,1 ≥ 0 ,

∀ η, ϑ ∈ Y1 , such that Cη,Cϑ ∈ [ζ2, ζ1] . (35)

There exists a continuous function φ̃ : R × R such that
φ̃|R×[ζ2,ζ1] = φ and (35) with φ̃ instead of φ is satisfied
for all η, ϑ ∈ Y1.

Remark 3: If φ has the form φ(t, z) = φ1(t)φ2(z) with φ1

and φ2 continuous, it is clear that such a monotone extension
exists.

Theorem 2: Assume that for system (1) the assumptions
(A1) – (A9) are satisfied. Then it holds:

a) For any g ∈ BS2(R; R) and any (ν0, z0) ∈ G, where
G is the associated positively invariant set, there exists a
solution (ν, z) ∈ W(0,∞;V1 ×R,V−1 ×R) of (1) such that
(ν(0), z(0)) = (ν0, z0).

b) For any g ∈ BS2(R; R) there exists for (1) a solution

(ν∗, z∗) ∈ Cb(R ;V0 × R) ∩ BS2(R;V1 × R) . (36)

(A10) Any continuous function φ which satisfies (11a) and
(11b) has a continuous extension to a function ˜̃

φ : R×R → R

which satisfies (11a) and (11b) for all (t, z) ∈ R × R.

The next theorem is a generalization of a result from [1] for
evolution systems in rigged Hilbert spaces with Duffing-type
nonlinearity.

Theorem 3: Assume that for system (1) the assumptions
(A1) – (A10) are satisfied and in addition to this the
following holds:

(i) The operator
[

A0 κ2B0

C0 κ2d0

]
from L(Y1, Y−1) is Hurwitz;

(ii) There exists a number ε > 0 such that

1
κ3 − κ2

+ Re
χ(iω) − d0

iω + κ2(χ(iω) − d0)
> ε, ∀ω ∈ R . (37)

Then we have:

a) For any g ∈ BS2(R; R) system (1) has a unique solution
(ν∗, w∗) inside G which satisfies (36) and this solution is
exponentially stable inside G.

b) Let the families of functions {φ(·, z) | z ∈ [ζ2, ζ1]} and
{φ̃(·, z) | z ∈ S}, where φ̃ is from (A9) and S ⊂ R is an
arbitrary bounded interval, be uniformly Bohr a.p. . Then for
any S2-a.p. forcing function g the unique in G bounded and
exponentially stable solution (ν∗, z∗) is Bohr a.p. .



III. EXAMPLE

We consider the restricted boundary control problem for the
temperature

θt = δ1θxx − δ2 θ , δ1 > 0, δ2 > 0 (38)
θx|x=0

= 0 , θx|x=1
= δ3[φ(t, w) + g(t)] , δ3 ∈ R ,

ẇ =
∫ 1

0

θ(x, t) k(x) dx + δ4[φ(t, w) + g(t)] , (39)

k(·) kernel function, δ4 < 0 ,

φ(t, w) = w − δ5(t)w3 Duffing-type nonlinearity,

δ5(t) ≥ 0 a.e.

Write (38), (39) as ODE in Hilbert space

ν̇ = A0ν + B0[φ(t, w) + g(t)] (40)
ẇ = C0ν + d0[φ(t, w) + g(t)] , (41)

V1 := W 1,2(0, 1) , V0 := L2(0, 1) , V−1 = V∗
1 ,

space of test state space dual space
functions (w.r.t. V0)

(ν, ϑ)1 :=
∫ 1

0

[νϑ + νxϑx] dx , ν, ϑ ∈ V1 .

A0 : V1 → V−1 is given by

(A0ν, ϑ) = −
∫ 1

0

[δ1ν
′(x)ϑ′(x) + δ2ν(x)ϑ(x)] dx .

B0 : R → V−1 (Control operator) is given through

(B0 ξ, ν) = δ1ξν(1) , ∀ ξ ∈ R , ∀ν ∈ V1 ,

i.e. B0 = δ1δ(x − 1) is Dirac’s δ-function concentrated at
x = 1 . C0 : V0 → R (measurement operator) is given by

C0ν :=
∫ 1

0

k(x)ν(x)dx , ∀ν ∈ V0.

(A7): Variational solution of (40), (41)

A pair of functions (θ(x, t), w(t)) is a weak solution of (38),
(39) on (0, T ) if

θ(·, t) ∈ W 1,2(0, 1) , w, ẇ ∈ L2(0, T ) ,∫ T

0

{ ∫ 1

0

[θηt − (δ1θxηx + δ2θη)] dx +

δ1δ3[φ(t, w) + g(t)] η (1, t)
}

dt = 0 , (42)∫ T

0

{
w(t)ζ(t) +

( ∫ 1

0

θ(x, t)k(x) dx +

δ4[φ(t, w) + g(t)]
)

ζ (t)
}

dt = 0 , (43)

∀ smooth test function η(x, t), η(x, 0) = η(x, 1) = 0 ,

∀ smooth test function ζ(t), ζ(0) = ζ(T ) = 0 .

(A6):

Transfer function: χ(p) =
∫ 1

0

θ̃(x, p) dx where θ̃(x, p) is the

solution of the BVP (k(x) ≡ 1, δ3 = 1, δ4 = −1, δ5(t) ≡
δ5) :

p θ̃ = δ1θ̃
′′ − δ2θ̃ ,

θ̃
′
|x=0

= 0, θ̃
′
|x=1

= 1 .

⇒ θ̃(x, p) =
cosh

√
p + δ2 x√

p + δ2 sinh
√

p + δ2

,

⇒ χ(p) =
1√

p + δ2 sinh
√

p + δ2∫ 1

0

cosh
√

p + δ2 dx =
1

p + δ2
,

⇒ sufficient to assume that

|g(t)| <
2

3
√

3 δ5

a.e. t ∈ R .

κ2 = φ′ (r1), κ3 = 1 ⇒ (A1)

χ(p) =
1

p + δ2

λ ∈ (0, δ2) ⇒ (A3)
λ2 − δ2λ + κ1 ≤ 0 ⇒ (A6)

x = 0

θt = δ1θxx − δ2θ − δ2θ

−δ2θ cooling

heating
x = 1

w − δ5w
3︸ ︷︷ ︸

φ(w)

+g(t)

δ2
2 ≥ 4κ1 ⇒ (A3) + (A6)��� cooling condition
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