Volker Reitmann |
![]() |
PD Dr. rer. nat. habil. |
[95] Determining Modes and Almost Periodic Integrals for Cocycles.
In: Differential Equations, Vol. 47, No. 13, 1837–1852, Pleiades Publishing, Ltd., 2011.
(Co-authors: Ermakov, I.V., Kalinin, Yu.N.)
[94] Определяющие
моды и почти
периодические
интегралы
для коциклов
In: Differentsial’nye Uravneniya, Vol. 47, No. 13, 1–19, 2011.
(Co-authors: Ermakov, I.V., Kalinin, Yu.N.)
[93] Stability analysis for Maxwell's equation with a thermal effect in one space dimension.
Journal of Mathematical Sciences, accepted for publication.
(Co-author: Yumaguzin, N.)
[92] Asymptotic behavior of Maxwell's equation in one-space dimension with
thermal effect.
In: Proc. of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications,
Dresden, Germany, 2010.
Discrete and Continuous Dynamical Systems - Supplement, Vol. II,
754-762, 2011.
(Co-authors: Kalinin, Yu., Yumaguzin, N.)
[91] О верхних
оценках
размерности
Хаусдорфа отрицательно
инвариантных
множеств локальных
коциклов.
Серия 1.
Математика,
механика и
астрономия,
Вып. 4, с. 61-70, 2011.
(Co-author: Slepukhin, A.S.)
[90] Верхние
оценки
Хаусдорфой
размерности
отрицательно
инвариантных
множеств
локальных
коциклов.
Доклады
Академии
Наук. Серия 1.
Математика,
том 439, № 6, с. 736-739, 2011.
(Co-authors: Leonov, G.A., Slepukhin, A.S.)
[89] Lyapunov functions in Hausdorff dimension estimates of cocycle attractors.
In: Proc. of the 5th Intern.
Conf. on Physics and Control (PhysCon2011), León, Spain, 2011.
(Co-authors: Leonov, G.A., Slepukhin, A.S.)
[88] Stability analysis for Maxwell's equation with a thermal effect in one space dimension.
In: Proc. of the Sixth Intern. Conf. on Differential and Functional Differential Equations
, Moscow, Russia, 2011.
(Co-author: Yumaguzin, N.)
[87] Determining functionals for cocycles
and application to the microwave heating problem.
In: Proc. of the Intern. Conf. Equadiff 2011
, Loughborough, UK, 2011.
(Co-author: Ermakov, I.)
[86] On Upper Estimates for the Hausdorff Dimension of Negatively Invariant Sets
of Local Cocycles.
Vestnik St. Petersburg University. Mathematics, 2011, Vol. 44, No 4, 292-300. (c) Alerton Press, Inc., 2011.
(Co-author: Slepukhin, A.S.)
[85] Upper Estimates for the Hausdorff Dimension Estimates of Negatively Invariant
Sets of Local Cocycles.
Doklady Mathematics, 2011, Vol. 84, No 1, 1-4, Pleiades Publishing, Ltd., 2011.
(Co-authors: Leonov, G.A., Slepukhin, A.S.)
[84] Absolute observation stability for evolutionary
variational inequalities.
In: World Scientific Publishing Co., Scientific Series on
Nonlinear Science, Series B, Vol.14, 2010.
(Co-author: Leonov, G.A.)
[83] Upper Hausdorff dimension estimates for the global attractors of nonautonomous systems.
In: Proc. of the Intern. Conf. "Topology, Geometry, and Dynamics: Rokhlin Memorial", St. Petersburg,
60 - 63, 2010.
(Co-authors: Leonov, G.A., Slepukhin, A.S.)
[82] Realization theory methods for the stability investigation of nonlinear
infinite-dimensional input-output systems.
In: Proc. of the Intern. Conf. EQUADIFF 11, Brno 2009,
Mathematica Bohemica, 136 (2), 185 - 194, 2011.
[81] Stratification of approximating surfaces for the Lorenz attractor.
In: Proc. of the 4th Intern. Sci. Conf.
on Physics and Control, Catania, Italy, 2009.
(Co-authors: Leonov, G.A., Malykh, A.E.)
[80] Absolute observation stability for evolutionary variational inequalities.
In: Proc. of the
6th EUROMECH Conference ENOC 2008 ,
St. Petersburg, 2008.
(Co-author: G.A.Leonov)
[79] Dynamische Systeme und Chaos. Kap. 17 (52 Seiten)
Mathematische Steuerungstheorie. Kap. 18 (10 Seiten)
In: Bronstein, I. N., Semendyaev, K. A., Musiol, G., und H. Mühlig (Eds.),
Taschenbuch der Mathematik. Harri Deutsch, Frankfurt/M., 2008.
[78] Hausdorff dimension estimates by use
of a tubular Carathéodory structure and their application to stability theory.
In: "Advances in Chaotic Dynamics and Applications", Cambridge
Scientific Publishers, 2007.
(Co-authors: G.A.Leonov, K. Gelfert)
[77] On a generalization of Leonov's invariant cones method for boundary
control problems.
In: Proc. of the Intern. Conf. Equadiff 07, Wien, 2007.
[76] Frequency domain conditions for the existence of Bohr almost periodic
solutions in evolution equations.
In: Proc. of the 3rd IFAC Workshop "Periodic control systems",
St. Petersburg, 2007.
[75] Zum Wirken Leonard Eulers in St. Petersburg aus der
Sicht der Stabilitätstheorie elastischer Systeme.
In: SITZUNGSBERICHTE DER LEIBNIZ-SOZIETÄT, trafo Verlag Berlin, Band 94, 33-41, 2007.
(Co-author: G.A.Leonov)
[74] Estimation of dynamic buckling loads in approximate shell models via frequency-domain methods.
3rd International Conference "Physics and Control" (PhysCon 2007)
September 3-7, 2007, Potsdam, Germany
In: Proc. Intern. Conf. "Physics and Control",
Potsdam, 2007.
(Co-author: A. Burtseva)
[73] Realization theory methods for the construction of positively invariant sets.
3rd International Conference "Physics and Control" (PhysCon 2007),
September 3-7, 2007, Potsdam, Germany
In: Proc. Intern. Conf. "Physics and Control",
Potsdam, 2007.
(Co-author: N. Kuznetsov)