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Abstract. We derive absolute observation stability and instability results for con-
trolled evolutionary inequalities which are based on frequency-domain characteristics
of the linear part of the inequalities. The uncertainty parts of the inequalities (nonlin-
earities which represent external forces and constitutive laws) are described by certain
local and integral quadratic constraints. Other terms in the considered evolutionary
inequalities represent contact-type properties of a mechanical system with dry friction.
The absolute stability criteria with respect to a class of observation operators (or mea-
surement operators) give the opportunity to prove the weak convergence of arbitrary
solutions of inequalities to their stationary sets.
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1 Basic notation

Suppose that Y} is a real Hilbert space. We denote by (-,+)o and || - ||o the scalar product
resp. the norm on Y. Let A : D(A) — Y, be the generator of a Cy-semigroup on Yy and
define the set Y7 := D(A) . Here D(A) is the domain of A, which is dense in Y, since A
is a generator. We denote with p(A) the resolvent set of A. The spectrum of A, which
is the complement of p (A), is denoted by o(A). If we define with an arbitrary but fixed
B € p(A)NR for any y,n € Y, the value

(y,m1 = (B = A)y, (BI — A)n), , (1.1)

then the set Y] equipped with this scalar product (-,-); and the corresponding norm || - ||;
becomes a Hilbert space (different numbers [ give different but equivalent norms). Denote
by Y_; the Hilbert space which is the completion of Yy with respect to the norm

lly|l-1 := ||(BI — A) 'yl||o and which has the corresponding scalar product

(y,m)-1:=((BI =AYy, (BI—A)"'n),, Vy,neY. (1.2)
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Thus, we get the inclusions Y; C Yy C Y 1, which are dense with continuous embedding,
ie, Y, CY,1,aa=1,0,is dense and ||y|la—1 < ¢||y]la, Yy € Y,. Sometimes ([3, 4])the
introduced triple of spaces (Y3, Yy, Y_1) is called a Gelfand triple . The pair (Y7,Y_4) is
also called Hilbert rigging of the pivot space Yy, Y1 is an interpolation space of Yy, and Y_;
is an extrapolation space of Yy ([7, 33]). Since for any y € Y and z € Y; we have

[(y, 2)o| = [(BI = A) 'y, (B — A)2)o| < llyll-1llzl1, (1.3)
we can extend (-, z)o by continuity onto Y_; obtaining the inequality
[y, 2)ol < lyll-llzlls, Vy €Yoy, Vz eV,

Let us denote this extension also by (-,-)_11 and call it duality product on Y_; x Y;. The
operator A has a unique extension to an operator in £(Yp, Y_1) which we denote by the
same symbol. Suppose now that 1" > 0 is arbitrary and define the norm for Bochner
measurable functions in L?(0,7;Y;) (j =1,0,—1) through

1yl = (/Tlly(t)llﬁdt) 1/2- (1.4)

Let L7 be the space of functions such that y € L*(0,T;Y;) and y € L?(0,T;Y_,), where
the time derivative g is understood in the sense of distributions with values in a Hilbert
space. The space L equipped with the norm

Iyller = (lyOIZL + 15O)1Z 1) (1.5)

is a Hilbert space and will be used for the description of solutions to evolutionary systems.

Remark 1.1 a) Let us denote by Cr := C(0,7;Y;) the Banach space of continuous
mappings y : [0,7] — Y, provided with the norm
lyller = sup [ly(@)llo-

t€[0,T
It is well known ([7, 26, 33]) that £ can be continuously embedded into the space Cr,
i.e., every function from Lr, properly altered by some set of measure zero, is a continuous
function y : [0,T] — Y5 and ||y(-)|l¢, < const- ||y(-)]|z,- This embedding property shows
that the Cauchy problem (2.1), (2.2) in the next section can be considered.

b) Since the infinite-dimensional evolutionary problems which are investigated in this
paper with the help of observation operators are assumed to have uncertain parts, the
choice of physically motivated phase spaces, control spaces, and observation spaces (see
Sect. 2) is crucial for the measurement process. It is easy to show that in some norms
the observation operator can be stable, whereas it may be unstable in other norms. In
many cases the described Gelfand triple of spaces is not sufficient for this and we need a
Hilbert scale {Yqy }aer of spaces. For arbitrary o > 0 we define (with A and § as in (1.1)
and (1.2)) the space Y, := D((BI — A)*) and the scalar product in Y,

(Y Ma = ((BI — A)%y, (BI — A)*n)o, Yy,neYs,. (1.6)

When «a < 0, the scalar product is also introduced by formula (1.6) and the space Y, is,
as Y_i, obtained by the completion of Yy with respect to their norm. Furthermore, for
any o, 8,7 € R with a € (8, 7) the pair (Y,,Y3) is a Hilbert rigging of Y,, ([7]). O
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2 Evolutionary variational inequalities

Suppose that T' > 0 is arbitrary and consider for a.a. ¢ € [0, T'] the observed and controlled
evolutionary variational inequality

(y—Ay—BE—f(t),n—y) 1. +¥m) -9y >0, VneY (2.1)

y(0) =yo € Yo,
w(t) =Cy(t), &) € et w®), &0)==~& €&(w), (2.2)
z(t) = Dy(t) + E£(t). (2.3)

In (2.1) — (2.3) it is supposed that C € L(Y_,W),D € L(Y1,Z) and E € L(E, Z) are
linear operators, =, W and Z are real Hilbert spaces, Y; C Yy C Y_; is a real Gelfand triple
and A € L(Y,, Y1), Be L(E,Y_1),p: R, x W — 2% is a set-valued map, ¢ : Y] — R,
and f : Ry — Y., are given nonlinear maps. The calculation of £(¢) in (2.2) shows
that this value in general also depends on certain “initial state” & of ¢ taken from a
set €(yo) C =. This situation is typical for hysteresis nonlinearities. We call B control
operator, C' output operator, D and E observation operators, = control space, W output
space, Z observation space, ¢ (material law) nonlinearity, ¢ (contact) functional and f
forcing function (see Fig. 1).

(N)
(9 — Ay — BE— f(t),n—y)-11+¥(n) —(y) >0
y0)=v , Vney

(L)
z(t) = Dy(t) + E¢(1)

z

Figure 1: State / linear output / nonlinear output /
observation diagram



In the following we denote by || - ||z, || - ||lw and || - ||z the norm in =, W resp. Z.

Let us now introduce the solution space for the problem (2.1), (2.2) .

Definition 2.1 Any pair of functions {y (-),£(-)} withy € Lr and &€ € L2 (0,00; =) such

loc

that BE € Ly , satisfying (2.1), (2.2) almost everywhere on (0,T), is called solution of
the Cauchy problem y (0) = yo, £(0) = & defined for (2.1), (2.2) .

In order to have an existence property for (2.1) — (2.3) we state the following assumption:

(C1) The Cauchy-problem (2.1), (2.2) has for arbitrary yo € Yy and & € E(yo) C Z at
least one solution {y (-),&(+)}-

Assumption (C1) is fulfilled, for example, in the following situation ([28]).

(C2) a) The nonlinearity ¢ : Ry x W — = is a function having the property that
A(t) := —A — By(t,C-) : Y1 — Y ; is a family of monotone hemicontinuous operators
such that the inequality

lA®)y|l-1 < ellylli +c2, VyeY,

is satisfied, where ¢, > 0 and ¢; € R are constants not depending on ¢ € [0,7] .
Furthermore for any y € Y; and for any bounded set U C Y; the family of functions
{(A(t)n,y)-1,1, n € U} is equicontinuous with respect to ¢ on any compact subinterval of

R, .

b) v is a proper, convex, and semicontinuous from below function on D(v) C Yj.

(C3) f € Li,(Ry;Y).
Under the assumptions (C2) — (C3) the following theorem of H. Brézis ([5]) holds:

Theorem 2.1 Suppose that for the family of operators A(t),t € R, , we have

(A®)y,y)-11 > alyl?+ 8, VyeY,

where @ > 0 and 3 € R do not depend on t. Then for arbitrary f € L2 (R.;Y )
and arbitrary yo € D(Y) Yo (i.e., the closure in Yy) there exists a unique weak solution
ye L2 (R ;Y1) NC(Ry;Yy) with y(0) = vy, satisfying the inequality

loc

Sln(t) =yl ~ Slns) — ()7

Vs,t: 0<s<t, Vne{neli (Ry;Y1):m¢€Lj (R;Y.q)}.



Furthermore, the solution satisfies the inequalities

||y||L2(0,T;Y1) < (”f”L?(o,T;Y,l) ) ||y0||0) )
Wllco,rve) < €2 (I1f]l200m:v-1) [190llo)

where ¢; : Ry xRy = Ry |, 2 = 1,2, are continuous and monotonically increasing
functions.

(C4) In the sequel we consider only solutions y of (2.1),(2.2) for which ¢ belongs to
2 (R Y ).

loc

Remark 2.1 a) Note that in the special case when ¢ = 0 in (2.1) the evolutionary
variational inequality is equivalent for a.a. t € [0,7] to the equation

y=Ay+BE+ f(t) inY.g,
y(0) = Yo, w(t) = Cy(t), £@t) € o(t,w(t)), £(0) € E(wo),
2(t) = Dy(t) + BE(1).

Under the assumption that ¢ is a single valued function this class was considered in
(3,4, 6,7, 8,10, 18, 21, 31, 36].

b) An important class of uncertainty systems (2.1), (2.2) are connected with hysteresis
operators. Let us describe one example of this type which in more details is discussed in
[35]. Let us assume that 7, and 7, are maximal monotone multivalued functions R — 2%
such that inf~,(u) < sup7e(u) Vu € R, and define the maximal monotone multivalued
function ¢ as in Fig. 2.

@v

¢ ={0}

Figure 2: Generalized play operator



The functions v, and +, define a hysteresis which is called generalized play operator. This
operator can be set in the form of a differential inclusion as in system (2.2) by w € ¢ (u, w)
in [0, 7], which is equivalent to the variational inequality ([35])

u€ J(w) = [infy; (w), supy(w)],
w(u—v) > 0 Yo € Jw.

By coupling this operator with a PDE, we get the problem

ie—Au =f in Qx(0,T),
w_¢ =0 in Qx(0,7)
£ € p(u,w) in Qx(0,7),

u(-,0) =ug, w(-,0) =wy in Q.

7

(2.4)

Here it is assumed that 2 C R” is smooth, 7" > 0,
feL?0,T; H1(Q)) and ug, wy € L*(9Q).

By applying standard results of the theory of nonlinear semigroups it is shown in [35]
that under certain additionally conditions the Cauchy-problem (2.4) has one and only one
solution in the sense of Benilan. This solution depends continuously and monotonically
on the data ug,wo and f. It is also demonstrated in [35] that the shortly characterized
approach can be extended to generalized Prandtl-Ishlinskij operators of play type which
are used for the description of elasto-plastic material laws. [l

Our aim is to investigate the properties of the inequality (2.1), (2.2) using only informa-
tions (measurements) from the observation operator (2.3). The concrete nonlinearities
(contact laws and material laws) are assumed to be unknown. We consider them as un-
certainties in the system. In order to describe the principal parts of such an uncertain
dynamic system we use methods from absolute stability theory. The main idea is to
characterize a prior: information about the considered class of nonlinearities by means
of suitably chosen quadratic forms. These quadratic forms, together with the description
of the linear parts of system (2.1) — (2.3) in form of transfer functions “from an input
to an output”, give the necessary information for the construction of observers which
are stable with respect to initial conditions in the considered class (2.1) — (2.3). The
formal definition of the uncertainty parts of (2.1), (2.2) is the following one (see also
[6, 18, 20, 21, 22]).

Definition 2.2 a) Suppose F' and G are quadratic forms on Yy x Z. The class of
nonlinearities N'(F,G) defined by F and G consists of all maps ¢ : R, x W — 2% such
that for any y(-) € L2 .(0,00;Y7) with y(-) € LE_(0,00;Y_1) and any &(-) € L2 (0, 00; E)

with £(t) € p(t,Cy(t)) for a.e. t >0, it follows that F(y(t),&(t)) > 0 for a.e. t > 0 and
(for any such pair {y,&}) there exists a continuous functional ® : W — R such that for

any times 0 < s < t we have /G(y(T),f(T))dT > ®(Cy(t)) — (Cy(s)) -
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b) The class of functionals M(d) defined by a constant d > 0 consists of all maps
¥ : Y1 — Ry such that for any y € L2 (0,00;Yy) with ¢ € L2 _(0,00;Y7) the function

loc loc

t — P(y(t)) belongs to L*(0,00;R) satisfying /1/J(y(t))dt < d and for any ¢ € N(F,Q)

0
and any ¥ € M(d) the Cauchy-problem (2.1) — (2.3) has a solution {y(-),&(-)} on any
time interval [0,T).

Remark 2.2 The functional ® used in the description of the class N'(F,G) can be con-
sidered as generalized potential of ¢ ([22]). Let us assume for a moment that W = = and
@ : W — W is a continuous nonlinear mapping of gradient or potential type, i.e., there
exists a continuous Fréchet-differentiable nonlinear functional ® : W — R, whose Fréchet
derivative ® (w) € L(W,R) at any w € W can be represented in the form & (w)n =
(¢(w),n) for any n € W. Then we can write for any function w € W,.?(0, 4+-00; W) and
any times 0 < s < t the path integral formula

/ (i(r), p(w(r))w dr = B(uw(t)) — B(w(s)).

It follows in this case that the properties described in Definition 2.2 a) are satisfied with
respect to the quadratic form G if we take (with W = Z) the form

G(y,§) = (CAy + CB¢,§)=. (2.5)
0

3 Dissipativity with respect to observations

A basic tool for the derivation of sufficient conditions for absolute stability and instability
of observations to variational inequalities is the following version of the Frequency Domain
Theorem or Kalman-Yakubovich-Popov lemma (KYP lemma) ([6, 8, 18, 20, 25, 36]). In
the infinite dimensional setting certain regularity assumptions are necessary which we
formulate at the beginning of this section. In the next part of the paper up to theorem
3.1" it is assumed that all spaces and operators are complex.

(F1) The operator A € L(Y1,Y 1) is regular ([11, 20, 24)), i.e., for any T > 0,
Yo € Yi,%r € Yy and f € L?(0,T;Y,) the solutions of the direct problem

y=Ay+f@t), y0) =y, aa.tel0,T]
and of the dual problem
h=—A+ f(t), p(T)=1r, aatel0,T]

are strongly continuous in ¢ in the norm of ¥;. Here (and in the following) A* € £(Y_1, Y})
denotes the adjoint to A, i.e., (Ay,n)-11 = (v, A*n)_11, Yy,n € Y.

Remark 3.1 The assumption (F1) is satisfied ([20]) if the embedding Y; C Yj is com-
pletely continuous, i.e., transforms bounded sets from Y; into compact sets in Yj. Il



(F2) The pair (A, B) is L?-controllable, ([6, 18, 20]) i.e., for arbitrary y, € Y, there exists
a control £(+) € L?(0, 00; Z) such that the problem
y=Ay+ B¢, y(0) =y
is well-posed on the semiaxis [0, +00) , i.e., there exists a solution y(-) € L, with
y(0) =vo.

Remark 3.2 It is easy to see that a pair (A, B) is L?-controllable if this pair is ezponen-
tially stabilizable, i.e., if an operator K € L(Yy, E) exists such that the solution y(-) of the
Cauchy-problem ¢ = (A + BK) y, y(0) = yo, decreases exponentially as t — oo, i.e.,

Je>0 Je>0: |ly@)llo <ce|lwollo, VE>0.

Note that the usual condition of ezact controllability (on any finite time interval) is in
general not satisfied for pairs of operators (A, B) arising from PDE problems ([34]). O

(F3) Let F(y,£&) be a Hermitian form on Y; x =, i.e.,
F(ya 6) = (Flya y)—l,l + 2Re (FZya 5)5 + (F3 ga g)Ea

where
F1 == Fl* S E(K,Y,l), FQ € ;C(}/E),E), F3 == F; € E(E,E) .

Define the frequency-domain condition

a = sup([ly[l + [I€]12) " F(y,€),

w,Y,€
where the supremum is taken over all triples (w,y,£) € Ry x Y] X = such that iwy =
Ay + B¢.

Theorem 3.1 a) (Frequency Theorem for the Nonsingular Case, ([20])

Assume for the linear operators A € L(Y1,Y_1),B € L(Z,Y_1) and the Hermitian form
F on'Y; X Z that the assumptions (F1), (F2) are satisfied. Then there exist an operator
P =P*e L(Y_1,Yy) N L(Yy, Y1) and a number § > 0 such that

2Re (Ay + BE, Py) 10+ F (3,6) < =0(lyll} + I€12) . V(y,§) eVixE,  (3.1)
if and only if the frequency-domain condition from (F3) with o < 0 is satisfied.

b) (Frequency Theorem for the Singular Case, [20])
Let the assumptions in Theorem 3.1a) be satisfied, and, in addition, let B € L(Z,Y}).
Then, for the existence of an operator P = P* € L(Y_1,Yy) N L(Yy, Y1) such that

Re(Ay—i_Bé-aPy)fl,l—i_F(yaé)SO: V(yag)E}/lXEa
it 1s necessary and sufficient that the following two conditions are fulfilled:

1) a<0, whereais from (F3);

o0

2) The functional J(y(-),&(+)) == /F(y(T), &(7)) dr is bounded from above on any set
0
My, = {y(),€() 1 9= Ay + BEon Ry, y(0) = o, Y(-) € Loo, £(+) € L?(0,00;5)} .
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Remark 3.3 a) Let, in addition to the assumptions of Theorem 3.1b), A be the generator
of a Cy-group on Y, and the pair (4, —B) be L?-controllable. Then the condition o < 0,
where « is from (F3), is sufficient for the assertion of Theorem 3.1b) ([18, 20, 22]). Note
that the existence of Cy-groups is given for conservative wave equations, plate problems,
and other important PDE classes ([12]).

b) Under the assumptions of Theorem 3.1 a) there exist operators
P=P e LYy, ), L€ L(EY) and K = K* € L(Z, Z) such that

2Re (Ay + BE, Py)_1, + F (y,€) = —||IL"y — K¢|2, V(y,€) € Vi x E. (3-2)
This equality is equivalent to the system of Lur’e or algebraic Riccati equations
A*P+PA+ F =—-LL", PB+F,=LK, F3=-K'K. (3.3)

Let us formulate Theorem 3.1a) in terms of operator symbols. For this we construct
(see also [2]) formally for the given pseudodifferential operators A(D), B(D), F; (D), F» (D)

and F3(D) with D = (li R ) their full symbols. Thus we get for A from the

i dxy’ ' OTm
domain G C R™ the families of analytic matriz functions AN, B(A), Fi(\) = F*()) and
F3(\) = F5(A\) of dimensions n X n, n X k, n X n, n X k and k X k, respectively, and the
Hermitian form

F Ny, €) =y By (\y + 2Rey* Fy(\)E + £ F3 (V)€

on C" x C*. Now the exponential stabilizibility of (A, B) can be characterized by means
of the pair of matrix functions (121()\), B(A)) : This pair is assumed to be stabilizable in

G, i.e., there exists a matrix-valued function S()) such that for all A\ € G the inclusion

A

o (A()\) + B(A)S‘(A)) Cc{s€C:Res< —¢}

with some ¢ > 0 is satisfied.

We introduce now the matrix transfer function x(w,\) = (iwl, — A(X))"'B()\). Suppose
that QO C R™*! is the analyticity domain of x(w, -) and let IT(w, \) be the k x k-Hermitian
matrix of the form F (), x(w, )&, €). Now, the Frequency Theorem 3.1a) can be formulated
in the following version which is important for practical applications since all conditions
for the existence of certain operators for the infinite-dimensional case are stated for matrix
functions.

Theorem 3.1° ([19]) Let the pair (A(\), B(\)) be stabilizable in G = Pr,Q and suppose
that there exists a 6 > 0 such that

M(w,\) < =01  forall (w,\) € Q.
Then there exist symbols P()\), L()\) and K ()\) and associated pseudodifferential operators
P(D), L(D) and K(D) satisfying the Lur’e equations

(3.4)

A*(D)P(D) + P(D)A(D) + F1(D) = —L(D)L* (D),
{ P(D)B(D) + Fy(D) = L(D)K (D), F3(D) = —K(D)K* (D). -

8



Let us state the following theorem which is based on the frequency-domain approach and
which can be considered as generalization of energy-type equalities for PDE’s. With the
superscript ¢ we denote the complexification of spaces and operators and the extension
of quadratic forms to Hermitian forms.

Theorem 3.2 Consider the evolution problem (2.1) — (2.3) with ¢ € N (F,Q) and
v € M(d). Suppose that for the operators A, B¢ the assumptions (F1) and (F2) are
satisfied. Suppose also that there exist an o > 0 such that with the transfer operator

X (s) = D°(sI® — A 'B*+ B¢ (s ¢ 0(A9)) (3.5)
the frequency-domain condition
e (ol = 4 BEE) + G (@l - 49 B0 < —alx el
Vw ER:iw & o(A?), VEE€E® '

1s satisfied and the functional
J(y(-),€()) = / [F(y(7), (7)) + G (y(7), &(7)) + al| D°y(7) + E€(7)|| 3] dr

is bounded from above on any set My, defined in Theorem 3.1b).

Then there ezist an (real) operator P = P* € L(Y_1,Yy) N L(Yy, Y1) and a number § >
0 such that with the Lyapunov-functional V(y) := (y,Py)o (y € Yy) for an arbitrary
solution {y(-),&(-)} of (2.1), (2.2) with ¢ € N(F,G) and ® as generalized potential of o,
the inequality

t

V(y(t) = V(4(9) + @ (Cy(t) = @ (Culs) + [ Plu(r),£()ir

s
t

n / Wy (1)) — w(—Py(r) +y(r)] dr + 6 / |Dy(r) + BE(r)|I} dr < / (F(r), Py(r))—1adr

(3.7)
is satisfied on any time interval 0 < s < t.

Proof For the Hermitian form F°+ G¢ all assumptions of the Frequency Theorem 3.1b)
are satisfied. It follows ([20]) that there exist a (real) operator P = P* € L(Y_1,Y,) N
L(Y,,Y1) and a number § > 0 such that

(—Ay — BE, Py)_11 > F(y,6) + G(y,€) + 6|1 Dy + B¢, V(y,€) e Vi xE. (3.8)

Consider the inequality (2.1) with the given solution {y(-),&(-)} . Take the special test
function Pn to see that on an arbitrary time interval [0, 7]

(y(t) — Ay(t) — BE(t) — f(t), Pn—y(t))-11 + ¥ (Pn) —¢(y) >0,
VneY,aa.tel0,T].



Substitute now Pn(t) = —Py(t) + y(t) . Then (3.9) can be written as
(9(t) — Ay(t) = BE() = f(8), =Py (t))-11 + ¥(=Py(t) + y(t)) — ¥ (y(t)) 2 0,

a.a.tel0,7] (3.10)
(9(1), Py(0)) 11— (Ay(t) + BE(), Py(t)) -
— (=Py(t) +y(1)) + &y (t)) < (f(D), Py(t))—l,la a.a. t €[0,77]. .
Now we use the inequality (3.8) in order to estimate
~(Ay() + BE(), PE0) 519

> F(y(t),£(1) + Gy(2), ())+5||Dy(t)+E§(t)||2z, a.a.t € [0,T].
We get from (3.11) and (3.12)

(@), Py(t))-11 + F(y(t), £() + G(y(t), £(1))

+9(y(t) = (=Py(t) +y(t)) + 0| Dy(t) + EED); < (f(t), Py(t)-11,  aa.te[0,T].
(3.13)

If we take in the inequality (3.13) the integral on an arbitrary time interval 0 < s <t we
receive

t t

V((t) - Viy(s) + / Fly(r), £(r))dr + / Gly(r) ,E(r))dr

s s
t

+ [ () = wl=Py(r) + ueD)dr + 5 [ 1Dy(r) + EEE dr

S

(3.14)

< / (F(r), Py(r))—1dr

Now it remains to use the properties of G with respect to the solution {y(-),&(-)}, i.e.,
t

/G(y(T),ﬁ(T))dT > ® (Cy(t)) — 2(Cy(s)).- (3.15)

S

From (3.14) and (3.15) the assertion of Theorem 3.2) follows immediately. [

Remark 3.4 Inequality (3.7) can be considered ([7, 11, 20, 22, 31, 32, 37]) as generalized
energy balance inequality or dissipation inequality. For a nonnegative operator P the term
V(y(t)) in (3.7) is the energy stored in the state y(t). The form —F which reflects the

influence of the constitutive law can be considered as energy supply rate and the integral
t

- / F(y(7),&(7))dr as energy absorbed by the system in the time period [s,t]. A contact

energy term ([11, 14, 15, 26, 29]) in (3.7) is characterized by . O

The physical interpretation of inequality (3.7) leads to the following definition.
10



Definition 3.1 The Cauchy problem (2.1), (2.2) is called dissipative in the sense of
Willems (/37]) with respect to the observation z from (2.3) and the classes N (F,G) and
M(d) if there exist a 6 > 0 and a bounded self-adjoint operator P = P* € L(Y_1,Yy) N
LYy, Y1) such that for any solution {y(-),£(-)} of (2.1), (2.2) and any time interval
0 < s <t the inequality (3.7) holds.

In other words we get from Theorem 3.2 the following

Corollary 3.1 Under the assumptions of Theorem 3.2 the Cauchy problem (2.1), (2.2)
is dissipative in the sense of Willems with respect to the observation z from (2.3) and the

classes N'(F, Q) and M(d).

4 Absolute observation - stability and instability of
evolutionary inequalities

We continue the investigation of energy like properties for the observation operators from
the inequality problem (2.1), (2.2) with f = 0.

The next definition generalizes the concepts which are introduced in [20, 21, 22, 38| for
output operators of evolution equations, namely in extending them to the observation
operators of a class of evolutionary variational inequalities. In the following we denote
for a function 2(-) € L? (R, ; Z) their norm by

()2, = / Tl dt.

Definition 4.1 a) The inequality (2.1), (2.2) is said to be absolutely dichotomic (i.e.,
in the classes N (F, G), M(d)) with respect to the observation z from (2.3) if for any

solution {y(-),&(-)} of (2.1), (2.2) with y(0) = yo, £(0) = & € E(yo) the following is true:
FEither y(+) is unbounded on [0,00) in the Yy-norm or y(-) is bounded in Yy in this norm

and there exist constants ¢ and ¢y (which depend only on A, B, N (F,G) and M(d)) such
that

IDy() + EEC)1z,2 < exllyolls + c2) - (4.1)

b) The inequality (2.1), (2.2) is said to be absolutely stable with respect to the
observation z from (2.3) if (4.1) holds for any solution {y(-),£(-)} of (2.1), (2.2).

¢) The inequality (2.1), (2.2) is said to be absolutely unstable with respect to the
observation z from (2.3) if for any constants ¢, and cy in (4.1) there exist initial states
yo € Yy and & € E(yo) such that solutions {y(-),&(-)} of (2.1), (2.2) starting in these
points do not satisfy (4.1) .

Our first result concerns frequency-domain conditions for absolute observation dichotomy
of controlled evolutionary variational inequalities.

11



Theorem 4.1 Suppose that the assumptions of Theorem 3.2 are satisfied with f = 0.
Assume additionally that any potential ® from the class N (F,G) is nonnegative. Sup-
pose also that for any potential ® there exists a constant ¢ > 0 such that ®(Cy) <
cllyll2, Yy € Yy. Then the inequality (2.1), (2.2) is absolutely dichotomic with respect
to the observation z from (2.3).

Proof As was shown in the proof of Theorem 3.2 under the assumptions of the present
theorem there exist an operator P = P* € £(Yp, Yp) and a number § > 0 such that for an
arbitrary solution {y(-),&(-)} of (2.1), (2.2) the inequality (3.7) holds. Suppose that y(-)
is bounded in Yj on [0, 00). Define the function

t

wi(t): = V(y(t))+‘P(0y(t))+/F(y(T),§(T))dT

+ / Wy (r)) — $(—Py(r) + y(r))] dr.

From (3.7) it follows that for arbitrary s,¢ such that 0 < s <t
t
W(t) = W(s) < —5/ I1Dy(7) + EE(T)[1Z dr <0, (4.2)

i.e., W is monotonically decreasing. Since y(-) is bounded in Y] on [0, 00) the function
W (-) is bounded from below. It follows that there exists the limit tliJIEl W (t) and that
— 100

for any ¢ > 0 by (4.2) the inequality
t
5 [ 1Dy(r) + EE@IE dr < W(0) ~ Jim W) < ol
0 o0
is true. From this we get immediately that z = Dy + E£ € L?(0,00; Z). Suppose now
t

that W(t) — —oo for t — oo. Then from ®(w) > 0, /F(y(T), &(7))dr > 0 and the

boundedness of /[w(y(T)) — Y(=Py(r) + y(7))]dr it follows that V(y(t)) — —oo for

t — 4o00. From this we conclude that ||y(t)||o — oo. [

In order to get absolute stability properties of (2.1), (2.2) with respect to the observation
z of (2.3) we need an assumption for (2.1) — (2.3) which is called “minimal stability” for
the class of evolution equations in [21, 22].

Definition 4.2 The inequality (2.1)—(2.3) with f = 0 is said to be minimally stable
if the resulting equation for 1 = 0 is minimally stable, i.e., there exists a bounded linear
operator K :' Y1 — Z such that the operator A + BK s stable, 1i.e.,

0(A+BK)C{se€C:Res<—e<0} with F(y,Ky)>0, VyeY,, (4.3

12



and
¢
/G(y(T), Ky(r))dr >0, Vst:0<s<t, Vye LIQOC(R+; Yi). (4.4)

Theorem 4.2 Suppose that the assumptions of Theorem 4.1 are satisfied and the inequal-
ity (2.1)—(2.3) with f = 0 is minimally stable, i.e., (4.3) and (4.4) are satisfied with some
operator K € L(Y1,Z). Suppose also that the pair (A+ BK, D+ EK) is observable in the
sense of Kalman ([6]), i.e., for any solution y(-) of

y=(A+BK)y, y(0)=uy,

with z(t) = (D + EK)y (t) = 0 for a.a. t > 0 it follows that y(0) = yo =0.
Then inequality (2.1), (2.2) is absolutely stable with respect to the observation z from

(2.3).

Proof Under the assumptions of the given theorem there exist by Theorem 3.1b) a (real)
operator P = P* € L(Y_1,Yy) N L(Y,,Y7) and a number § > 0 such that the inequality
(3.8) is satisfied. Setting in (3.8) £ = Ky from (4.3) with arbitrary y € Y7 we get with
(4.4) the inequality

((A+BK)y, Py)_11 < —0||Dy+ EKy ||2zv VyeY. (4.5)

Using the fact that A + BK is a stable operator and the pair (A + BK,D + FK) is
observable, it follows ([6, 9, 36]) from (4.5) that P = P* > 0. Suppose now that {y(-),&(-)}
is an arbitrary solution of (2.1), (2.2) with f = 0. With the Lyapunov-functional

V(y) = (y, Py)o > 0 it follows from (3.7) that for arbitrary ¢ > 0

t

~Vw) = @ (Con) + [ [6(6(7)) = (=Pu(r) + y(D)ldr+ & [ 1Dy(r) + B dr <o.
" ’ (4.6)

t
Since by assumption /[w(y(T) — Y(—=Py(r) + y(7))]dT > —c3 > —00 we get from (4.6)

0
for arbitrary ¢ > 0 the inequality
t
5/ 1Dy(7) + EE(T)||7 dr < V(yo) + (Cyo) + c2 < V(o) + ¢ lyolls + c2- (4.7)
0

The property (4.7) implies now the estimate (4.1) . [

In the next theorem we show that under certain assumptions the inequality (2.1) —(2.3)
is absolutely unstable with respect to the observation.

13



Definition 4.3 The inequality (2.1)—(2.3) with f = 0 is said to be minimally unstable
if the resulting equation for 1 = 0 is minimally unstable, i.e., there exists a bounded linear
operator K :' Y1 — Z such that the operator A + BK 1is unstable, i.e.,

c(A+ BK)N{s€C:Res>e>0}#@ with F(y,Ky)>0, VyeY,, (4.8)

and

¢
/G(y(T), Ky(r))dr >0, Vs,t:0<s<t,Vye Lfoc(&;ﬂ). (4.9)

S

Theorem 4.3 Suppose that the assumptions of Theorem 4.1 are satisfied and the inequal-
ity (2.1)—(2.8) with f = 0 is minimally unstable, i.e., (4.8) and (4.9) are satisfied with
some operator K € L (Y1,Z). Suppose also that for the equation

y=(A+ BK)y, y(0) = o,

in Yy there exists a splitting Yo = Y, @Yy such that for any yo € Y,© the solution y(-) of
this equation satisfies tlim y(t) =0 and for any yo € Yy~ a unique solution y(-) of the last
—00

equation ezists on (—oo, 0) satisfying tlim y(t) = 0. Assume that the pair (A+ BK, D) is
——00

observable on Y;" | i.e., for any solution y(-) with z(t) = Dy(t) = 0 for a.a. t > 0 it follows
that y(0) = yo = 0. Then there exists an operator P = P* € L(Y_1,Yy) N L(Yy, Y1), which
is non-negative on Y," and negative on Yy . If yo € Yy 1s an arbitrary point satisfying

1

3 (%o, Pyo)o + @ (Cyo) < —d, (4.10)
where d is the parameter from the class N'(d), then for any solution {y(-), £(-)} of
(2.1)— (2.3) with y(0) = yo the term ||Dy(-)||%, is unbounded on [0,00) proposed that
D : Y1 — Z is invertible. It follows that the inequality (2.1)— (2.3) is absolutely unstable
with respect to the observation z(-) = Dy(-).

Proof Under the assumptions of the present theorem we get on the basis of Theorem
3.1b) the existence of an operator P = P* € L(Y_1,Yy) N L(Y;, Y1) and a number 6 > 0
such that inequality (3.8) with E = 0 is satisfied. Setting again in (3.8) £ = Ky from
(4.8) with arbitrary y € Y7 we see that inequality (4.5) with E = 0 is true. Using now the
fact that A + BK is an unstable operator, the pair (A + BK, D) is observable and that
there exists a splitting Yy = Y, @ Y,;" with the above properties, we see ([6, 9, 20]) that
the Lyapunov-functional V (y) := (y, Py), is non-negative on Y;" and negative on Y .
Consider now an arbitrary solution {y(-),&(-)} of (2.1), (2.2) with initial state yo € Y .
It follows that V(yo) < 0 and, on the basis of (3.7),

14



t

V(y(t) - ® (Cyo) + / Wy (r)) — b(~Py(r) + y(r)] dr + 6 / IDy() |2 dr < V(yo) <0
0 ’ (4.11)

forallt> 0.
From (4.11) we conclude that for ¢ — +o0

W (t) = V(y(t)) +/0 [ (y(r)) — Y(=Py(r) + y(7))]dr £ 0. (4.12)

Indeed, if we suppose that (4.12) does not hold, we get from (4.11) for large ¢ the estimate

t
1
©(Cu) +5 [ Dy dr < 3V () <0,
0

which is impossible since ®(Cyp) > 0 and § > 0 .
Let us now show that

W(t) - —oo for t— +oo. (4.13)
Suppose that (4.13) is not true. This means that there exists a constant ¢ > 0 such that
W(t)>—c , Vt>0. (4.14)

From (4.11) and (4.14) it follows now that for all ¢ > 0
t
5 / | Dy()I% dr < e+ (Cyo) + V (uo). (4.15)
0

Since D is invertible, the inequality (4.14) shows that y(-) € L?(0,00;Y;) and, conse-
quently,

V(y(t)) >0 for t— 4o0. (4.16)

Recall now that for all ¢ > 0

t

- /W(y(T)) —Y(=Py(r) + y(7))] dr < d. (4.17)

0

It follows from (4.11), (4.16) and (4.17) that for sufficiently large ¢
1

It is clear that (4.18) contradicts (4.10) . [
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5 Application of observation stability to the beam
equation

Example 5.1 Consider the equation of a beam of length [, with damping and Hookean

material, given as
Pu  Ou O (EA_ [0u
PA%E T 1o oe (?9 (a_>> =0, (5.1)
u(0,t) =u(l,t) =0 for t>0, (5.2)
u(z,0) = ug(x), ue(x,0) = uy(z) for z € (0,0).

Here u is the deformation in the z direction. Assume that the cross section area A, the
viscose damping <, the mass density p and the generalized modulus of elasticity FE are
constant. The nonlinear stress-strain law g, is given by

jgw)=14+w—-(1+w)?, we(-1,1). (5.4)

Let us break the stress-strain law into the sum of a linear term and a nonlinear term as
g(w) = g(w) + w. Then the above model (5.1) can be rewritten as

a5 e w (e (a) - 69
Assume the Gelfand triple V; C Vy C V_; with

Vo:=L*(0,1), Vi:=Hj(0,l) and V_;:=H '(0,1). (5.6)
Then equation (5.1) — (5.3) can be rewritten in V_; as

pAuy + Aju + Aguy +C*g(Cu) =0, (5.7)
uw(0) =up, uw(0)=1uy, (5.8)

with Ay € L(V1,V_1), Ay € L(V1,V_1) (strong damping), C € L(Vy,V,) and

g : Vo — Vy. The operators A; and A, are associated with their bilinear forms a; :
Vi x V1 = R (i = 1,2) through (A, w)y_, vy, = a;i(v,w), Yo, w € V.

In order to get a variational interpretation of (5.7), (5.8) we make the following
assumptions ([3, 4]) :

(A1)
a) The form a; is symmetric on Vy x V,
b) a; is V; continuous, i.e., for some ¢; > 0 holds |a; (v, w)| < ci||v]|y, |wl]y,

Yo, we V;;
¢) ap is strictly Vy-elliptic, i.e., for some k; > 0 holds ay(v,v) > ki||v]|3,, Vv e V.
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(A2)
a) The form a, is V; continuous, i.e., for some ¢y > 0 holds |as (v, w)| < e||v||y, ||w|ly, 5
VU, w € Vl .
b) The form ay is V; coercive and symmetric, i.e., there are ko > 0 and A >0 s.t.

as(v,v) + Xo||v|l5, = Eallv]l3, and

as(v,w) = as(w,v), Yv,w e V.

(A3)

a) The operator C € L(V1,V)) satisfies with some £ > 0 the inequality
ICvllvy < VEl[vlly,, Vv eV
g : Vo — Vp is continuous and ||g(v)||y, < c1l|v]ly, + c2 for v € Vy , where ¢; and ¢
are nonnegative constants.

b) g is of gradient type, i.e., there exists a coninuous Frechét-differentiable functional
G : Vy — R, whose Frechét derivative G’ (v) € L(Vy,R) at any v € V, can be
represented in the form

G'Ww= (g(v),w)y,, Ywe,.

¢) ¢(0) = 0 and for some € < 1 we have for all v,w € V}

(9(v) = g(w),v = w)y, > —ekik™ |lv — wlf5, - (5.9)

We say that u € Lr is a weak solution of (5.7), (5.8) if

(wse, My_y vy + a1 (u,m) + ag (ug, n) + (9(Cu),Cu)o =0  Vn€ Lr, aa.te€[0,T].
(5.10)

Let us formulate our problem (5.10) in first order form on the energetic space Y, := V; XV,
in the coordinates y = (y1,y2) = (u, uy) . Define for this Y1 :=V; xV;and a: Y1 xY; = R
by

a((v1,v2), (w1, w2)) = (va, w1)y, — a1(vi, ws) — ag(ve, ws), (5.11)
v (UlaUQ)) (w1)w2) € le X Yl -

The norms in the product spaces Y, and Y] are given in the standard way by
1y, )15 = llnll3, + lw2ll5e s (91,92) € Yo, and
1y 921l = s, + llwalls, - (v1,92) € Y7

Then (5.10) can be rewritten as

(,m) 11 —a(y,n) = (Be(Cy),m) 1,1, y(0) = (wo,u1), VYne€Y, (5.12)

where

By(Cy) = ( —C*gO(Cyl) > | (5.13)
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We can also write (5.12), (5.13) formally in the operator form

y = Ay+ Byp (Cy), y(0) = yo, (5.14)
where A is defined by

a(v,w) = (Av,w)_11, Vov,weY,

. 0 1
ie., A= A —A2:|'

It is shown in [3, 4, 10, 30] that the embedding Y7 C Y} is completely continuous and the
operator A generates an analytic semigroup on Y7, Yy and Y ; =V; x V_;. Furthermore,
its semigroup is exponentially stable on Y, Yy and Y ;. From this it follows that the pair
(A, B) is exponentially stabilizable. Let us consider with parameters ¢ > 0 and o € R a
more simplified form of (5.1) — (5.3) written as

0%u au 0%u 0 ou 0

together with the boundary and initial conditions (5.2), (5.3), where we have £ = —g = @
introduced as new nonlinearity. According to (5.9) in (A3)a) we can assume that ¢ €
N (F) with the quadratic form F(w,§) = pw? — £w on R x R, where p > 0 is a certain
parameter. Note that it is possible to include a second quadratic form G if we use the
information from (A3)b).

Suppose that A\ > 0 and e, (k =1,2,...) are the eigenvalues resp. eigenfunctions of the
operator —A with zero boundary conditions. We write formally the Fourier series of the
solution u(z,t) and the perturbation & (z,t) to the (linear) equation (5.15) as

u(z,t) =Y uf(t)ey and £(z,t) =) & (t)es. (5.16)

If we introduce the Fourier transforms @ and € of (5.16) with respect to the time variable
we get from (5.15) for £k =1,2,... the equations

—w?T* (iw) + 2iwet (iw) + M (iw) = —a/ Mg € (iw) (5.17)
It follows from (5.17) that for k = 1,2, ...
% = x (iw, \g) €F (5.18)
where
X (iw, Ag) = (—w? + 2iwe + aXg) ™" (@)), Yw € R: —w? + 2iwe +aXy #0.  (5.19)

In order to check the sufficient conditions for Theorem 4.2 we consider the functional

J(w,€) :==Re / / (plw|? — we*) dxdt . (5.20)



Using the Parseval equality for (5.20) with
[0 = > Aelaf =3 Mlaf =Y Ao, ) PIEF?
k=1 k=1 k=1

and
W = Z VAT (ER) = Z VA x (1w, Ae) €57
k=1 k=1
we conclude ([1, 21]) that the functional (5.20) is bounded from above if and only if the
functional

+oo  pl 0 N 0 _
Re/ /[ﬂ > AelxCiw, ) PIEFE = v/ x (iw, Ae) [ | dadw (5.21)
—oo J0 k=1 k=1

is bounded on the subspace of Fourier-transforms defined by (5.18), (5.19) or, using again
a result of Arov and Yakubovich ([1]), that the frequency-domain condition

AKX (1w, M) [P = v/ A Re x(iw, A) <0, (5.22)
Vwe€R: —w? +2iwe+a\ #0, k=1,2,...,

is satisfied, where x (iw, \y) = (—w? + 2iwe + aXp) "L (—av/A) . Clearly, (5.22) describes
a certain domain () in the space of parameters y > 0,& > 0,a € R. Theorem 4.2
shows that (5.14), associated with (5.15),(5.2),(5.3) is absolutely stable with respect to
the observation z = (y1,y2) , if the parameter from Q also guarantee the minimal stability
of (5.14). O

6 Absolute observation convergence of evolutionary
inequalities

In this section, we consider the observation stability of the difference of two arbitrary
solutions of inequality (2.1), (2.2), i.e., convergence properties with respect to the obser-
vation (2.3) of this inequality, in order to get some information about the convergence of
arbitrary solutions to the stationary set.

Let us start with the definition of a new class of nonlinearities for the case = =

Definition 6.1 Suppose in (2.1), (2.2) that = = W and assume that pug > 0 is an
arbitrary number. The class N¢(ug) consists of all maps ¢ : Ry X W — W such that

0< (& — &, wi —wa)w < pollwr — wollfy

6.1
Vt>0, Yw,wy €W, V& €op(t,w), V& € o(t,we). (6.1)

Now we are in the position to give a precise interpretation of observation convergence (see
also [13, 17, 21]).
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Definition 6.2 The inequality (2.1), (2.2) is said to be absolutely convergent (in the
classes N¢(ug) and M(d)) with respect to the observation z from (2.3) if there exist
two constants ¢ > 0 and c3 > 0, which depend only on A, B,N*¢(uy) and M(d), such that

for any two solutions {y(-),&(-)} and {g(-),&(-)} of (2.1), (2.2) we have

1D (y() = 5()) + E (£() — &())

1.2 < ex(llyo = Tollg + c2) - (6.2)

Theorem 6.1 Suppose that the operator A from (2.1) generates a Cy-group on

Yy, B € L(2,Yy), the pairs (A, B€) and (—A¢, B¢) are L?-controllable, and (2.1), (2.2)
with f =0 and E = W is minimally stable, i.e., there exists an operator K € L (Y1, W)
such that A + BK is stable, (Kv,Cv)w — ~||Kv||3, > 0, Vv € Yy, and the pair

Ko
(A+BK, D+ EK) is observable. Suppose also that o € N(ug) and there exists ane > 0
such that

Re (& x™) (1w)&)we — oo l€llfve < —ellx® (iw)élffye

. (6.3)
VweR:iw¢go(A%), VE€ We.

Then inequality (2.1), (2.2) is absolutely convergent in the classes N¢(uo) and M(d) with
respect to the observation z.

Proof Suppose that {y(-),£(-)} and {5(-),£(-)} are two arbitrary solutions of (2.1), (2.2).
If we consider in (2.1) the solution {y(-),&(-)} and take the test function n = g we get

(y—Ay—BE—f(t),7—y) 11 +¢([H) - (y) >0. (6.4)

Now we consider (2.1) with the solution {#(-),£(-)} and take the test function = y in
order to get

(§—AF—BE~ f(t),y = §) 11+ (y) — ¢ (7) > 0. (6.5)
Sgppose P =P*e L(Y 1,Yy) N L(Y}, Y1) is an arbitrary linear operator and write (6.4)
;Vljhy = P(y —y) and (6.5) with y —y = P(y —9) , i-e,
(§—Ay—BE—-f(1), PO—y)a+y(y—Py—y)—v(y) 20 (6.6)
and
(y—Ay—BE—f(t), P(y—9)-1a+¥ G+ Py—9) - =20. (6.7
If we take the sum of (6.6) and (6.7) we get the inequality
W—9,Py—9) 11— (Aly—9) +B(E—&),Py—17) 11
Y (y—PH—-y)+vW) -vH+Py—-y)+v(Hy) <0.

(6.8)
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Recall now that the frequency-domain inequality (6.3) together with the other assump-
tions of Theorem 6.1 guarantee on the base of Theorem 3.1b) the existence of a (real)
operator P = P* € L(Y_1,Yy) N L(Yy, Y1) and a number § > 0 such that

(Av+ BC, Pv)-11+ (¢, Cv)w — 5 |ICIfy < =] Dv + El%,

(6.9)
YveY, V(eW.

Using the fact that (2.1), (2.2) is minimally stable with some K € £(Y;, W) we conclude
from (6.9) that ((A+BK)v, Pv)_11 < =§|[(D+KE)v||%, Vv €Y;.From this inequality
it follows that P is non-negative.

For the considered arbitrary solutions {y(-),& (-)} and {g(-),&(-)} of (2.1), (2.2) the
inequalities (6.8) and (6.9) imply that

=9 Py—9)-11+(E=&Cly—9)w — 55 11E = Ellfy

(6.10)
+oDy—-y)+EE-9IZ<0.

The integration of (6.10) on an arbitrary time interval [0, ] (¢ > 0) gives for the Lyapunov-
functional V' (y) := (y, Py)o on the base of (6.1) and the fact that ¢ € M(d) the inequality

‘“Mﬂ—%ﬂ%*“ﬂ@—ymﬂ+5/waﬁ?—yﬁD+E@®—f@D@dT§a

(6.11)

where ¢ is a sufficiently large constant. Since V(y(t) — g(¢t)) > 0 the inequality (6.11)
implies

5/waﬁ?—yﬁD+E@@?—ﬂﬂmémfﬂdwm—ymﬂ+o

[ |
In the sequel we investigate the special situation of the convergence of an arbitrary solution
of (2.1), (2.2) to a stationary solution. In case when such a stationary solution is unique
we can use Theorem 6.1. In many applications, however, the inequality (2.1), (2.2) has a
continuum of stationary solutions and the approach of Theorem 6.1 is not applicable.
Let us consider the autonomous inequality (2.1), (2.2) with ¢(t,w) = ¢(w) and f(t) =0,
ie.,

(—Ay—BEn—y)oi+v(n) —v(y) >0, Vyel, (6.12)
y(0) =y €Yy,

w (t) = Cy(t), £(t) € p(w(t)), £(0) =& € E(wo), (6.13)
z(t) = Dy(t)+ E£(¢) . (6.14)

Our aim is to show that under certain observation conditions any solution of (6.12),
(6.13) converges to the stationary set of the inequality. Let us start with some definitions
([13, 17, 21]).
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Definition 6.3 Any constant solution {y(-),&(-)} of (6.12), (6.13), i.e., y(t) = const
£(t) = const on Ry, is called a stationary solution of (6.12), (6.13) . The set of all
stationary solutions of (6.12), (6.13) is called the stationary set of (6.12), (6.13) and
denoted by L x A C Yy x 2. We say that the solution {y(-),&(-)} of (6.12), (6.18) is
weakly quasi-convergent if y(t) — L in the weak sense as t — +o00. The inequality
(6.12), (6.13) is called weakly quasi-gradient-like if every its solution is weakly quasi-
convergent.

It is clear from the definition that a pair {7, £} is a stationary solution of (6.12), (6.13) if
and only if

(—Ay—BE, =)y + () —¢([H) =0, VyeYi, (6.15)
7 €Yy

Cy, € p(w)NE®D). (6.16)

With respect to the stationary set described by (6.15), (6.16) we make the following
assumptions.

Sl

(S1) The stationary set L x A of (6.15), (6.16) is non-empty and consists of isolated
points only.

Remark 6.1 Under standard conditions the assumption (S1) is satisfied ([11, 24, 26]).
If (6.15) can be written as

a(@n—9) +c@n—19-11+vn)—¥(FH =0, Vyey, (6.17)

where a(y,n) = a (n,y) is a quadratic form on Y; x Y] and ¢ € R is a number, the problem
(6.15) is equivalent to the minimisation of the functional

Ty = 5 [ann) +eclnll] + ()

on Y . O

Let us formulate some simplifications of system (6.12), (6.13) . Assume that
(S2) v=0 and E=W=R.

It follows that C € L(Y_1,R), B € LR, Y_,),D € L(Y1,R), E € L(R, R), and
¢ : R — 28 | Let us further assume, as in the case of ODE’s with retarded arguments,
([21]) that ¢ is piecewise continuous, discontinuous in w = 0 and with the set of isolated
discontinuity points {w;}. For any discontinuity point w; the set ¢(w;) C R is assumed
as a closed interval such that ¢(w;) D [lirginf o(w),limsup ¢(w)]. Then ([13, 16]) ¢ is

wW—wW;j
an upper-semicontinuous function. The local solution in the sense of Sect. 2 is assumed
to exist globally. In order to construct a quadratic constraint F' for ¢ we assume that ¢
satisfies the following property.

(S3) Ew>0, Vw e R, VE € p(w). (6.18)
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The last condition implies that ¢(0) = [p1, ps], with ¢; < 0 and ¢y > 0. Assume ¢; < 0
and @9 > 0.

In mechanics many systems with dry friction are described by equation (6.12), (6.13)
with nonlinearities satisfying (S1) - (S3). Typical solutions of such systems are sliding
solutions. Let us give the formal definition which goes back to [13, 21, 27].

Definition 6.4 A solution {y(-),&(-)} of (6.12), (6.13) is called sliding solution on the
time interval (t1,12) if w(t) = Cy(t) = w; on (t1,12), where w; is a discontinuity point of
®.

Let us investigate observation properties of sliding solutions associated with the disconti-
nuity w = 0 of . Consider for s € p (A°) the transfer operator x(*)(s) = C¢(sI*—A¢)~' B¢
= C°x(s) and assume that 0 € p (A4°) and x()(0) = 0. It follows from (6.12), (6.13) that
the stationary sliding solutions of the system corresponding to the discontinuity w = 0 of
¢ have the form y(t) = y,£(t) = &, where £ € p(0),y = EA7'B .

From Theorem 4.1 we derive now sufficient conditions for absolute observation stability.
Note, that for the case of ODE’s with retarded arguments similar conditions are derived
in [21].

Theorem 6.2 Suppose that for the linear part of (6.12), (6.18) the assumptions of The-
orem 6.1 are satisfied, (6.12), (6.13) is minimally stable, x*)(0) = 0 and there exist
parameters ©; > 0 (j = 1,2) such that the following inequalities hold:

Re [(©; +iw ©,) x™(iw)] <0, Vw € R\{0}, (6.19)
.1 . w) (s
})15)1(1) " Re [(©; + iw ©,) x™ (iw)] < 0, (6.20)
and
|li1|n inf Re [(©; + iw©,) x™)(iw)] <M < 0. (6.21)
w|—+00

Then (6.12), (6.13) is absolutely stable with respect to all observations z,(t) = Dy(t) and
2o(t) = Dy(t) = DAy(t) + DBE(t) , where D € L (Y1, R) is such that

DA 'B=0. (6.22)

Proof We consider the quadratic form
F+G=0,F'+0,G':=0,Cyé+ 0,C [Ay + BEE. (6.23)

The first part ©; F' comes from the inequality (6.8), the second part ©,G" is introduced
through (2.5). For £ = 0 we have F(y,0) + G(y,0) = 0 and the system is minimally
stable. Extend now F'+ G to a Hermitian form F¢ 4 G°¢ on C x C by

Fe(y, &) + G*(y,§) = Re[0:10y€™ + 020 (Ay + BE)E™]. (6.24)

If we consider the observations z;(t) = Dy(t) together with the quadratic form (6.23) the
frequency-domain condition (3.6) becomes

36 > 0:1(iw) < —6|Dx(iw)]*,  Vw€R, (6.25)
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with II(iw) := Re [(©1+iwO,)x™ (iw)] . In [21] it is shown that (6.25) is true if (6.19)—(6.21)
and (6.22) are satisfied. Thus the system (6.12), (6.13) is absolutely stable with respect
to all observations z;(t) = Dy(t) with D satisfying (6.22).

If we consider now the observations zy(t) = DAy(t) + DBE(t) together with the quadratic
form (6.23) the frequency-domain condition (3.6) becomes

36 > 0: M(iw) < —dliwDx(iw)?, Yw € R. (6.26)

It is easy to check (see [21]) that (6.26) is also satisfied provided that (6.19)—(6.21) and
(6.22) are true. This shows that the system (6.12), (6.13) is also absolutely stable with
respect to the observation 2z, [ |

From Theorem 6.2 we get immediately the following.

Corollary 6.1 Suppose that the assumptions of Theorem 6.1 are satisfied. Then every
solution {y(-),&(-)} of (6.12), (6.13) converges weakly to the set

L:={A7'B¢, £€R},

and, consequently, the system (6.12), (6.13) is weakly quasi-gradient like with respect to
the stationary sliding solutions.
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