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Abstract. Evolutionary variational inequalities are considered as control systems in
a general rigged Hilbert space structure. Sufficient frequency domain conditions for
boundedness and the existence of periodic and almost periodic solutions are derived. As
an example a boundary control problem with periodic exitation function is considered.
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1 Introduction

Frequency domain conditions for the existence of periodic and almost periodic solutions of
ODE’s are derived in [8, 16, 18, 19]. In [1, 4, 10, 15] sufficient conditions for the existence
of almost periodic solutions for evolutionary inequalities and equations are proven using
the theory of monotone operators. For many systems for which monotonicity properties
are not satisfied it is possible to construct certain Lyapunov functionals as solutions of
associated operator inequalities. As a byproduct of such Lyapunov functionals one can
derive a priori estimates for the solutions which give some information about their global
existence.

We consider in this paper bounded, periodic and almost periodic solutions of a class of
evolutionary inequalities or equations the linear part of which is defined by linear operators
acting in a rigged Hilbert space structure. Such systems occur naturally if one considers
boundary control problems ([7, 9, 14]). Another origin for these systems is the realization
theory of dynamical systems. It was shown in [17] that if one has an observation (time-
series) with a semigroup property of a well-posed input-output process then there exists a
realization of this observation as solution of a dynamical system given in a rigged Hilbert
space structure.
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The paper is organized as follows. In Section 2 we describe a class of evolutionary in-
equalities as generalized feedback-control inequalities. We characterize the “linear part”
of such inequalities and introduce certain constraints for the resulting “nonlinearities”.
In Section 3 frequency-domain conditions for the existence of bounded solutions for the
evolutionary inequalities are derived.

Unlike the finite-dimensional case the solution of the operator Lyapunov inequality with
a given stable system operator is not necessarily coercitive. In order to get the missing
coercitiveness of the Lyapunov functional we add to the quadratic form some form which
comes from generalized gradient like properties of the nonlinearity. In Section 4 this
Lyapunov functional is used to prove the existence of periodic or almost periodic solutions.
In the last Section 5 we discuss the existence of periodic and almost periodic solutions for
a boundary control problem connected with the heat equation ([5, 12]).

2 Evolutionary variational inequalities

Let us start with the construction of a rigged Hilbert space structure as it is defined in
[3]. Suppose that Yj is a real Hilbert space with (-,-)o and || - ||o as scalar product resp.
norm. Suppose also that on Y there is an unbounded self-adjoint operator A with dense
domain D(A) such that

(Ay, Ay)o > llylls, Yy € D(A).
Then Y] := D(A) is a Hilbert space with the scalar product

(y,m1:= (Ay,An)o, Vy,neDA), (2.1)

Consider in Y the new scalar product

(y: 77)71 = (A_ll/, A_177)0 ) Vya ne YE) ) (22)

and let Y_; be the completion of Y; with respect to this scalar product. It is clear that
Y ; is a Hilbert space. We denote the scalar product and norm of Y ; by (-,-) ; and
|| - || -1, respectively. Thus we have the dense and continuous embedding ¥; C Y; C YV
which is called rigged Hilbert space structure. It follows from above that for y € Y; and
n € Yy we have

[, )l = |(A™ "0, Ay)ol < 1A nllo [[Ayllo = llmll-1llyll: -

Extending by continuity the functionals (-,y)o onto Y_; we obtain the bilinear form
(,-)-11 (“scalar product”) on Y ; x Yj, coinciding with (-,-)o on Y x Y; and satisfy-
ing [(m,y)-11] < [Inll-1llyll, VneYy,yen.

If —oco < T7 < Ty < +00 are two arbitrary numbers, we define the norm for Bochner
measurable functions in L*(T},Ty;Y;), 7 =1,0,—1, by

o= ([ i) (23)

T
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Let W(T,T;) denote the space of functions y such that y € L?(T},Ty;Y;) and g €
L*(Ty,Ty; Y_1) equipped with the norm

lyllwerr = (lyllzs + 19115 -1)' - (2.4)

By an embedding theorem ([13]) one can assume that any function from W(T},T,) belongs
to C(1T1,T;Ys). Assume now that = is a real Hilbert space with scalar product (-, -)= and
norm || - ||z, respectively, and

A:Yi—>Y, and B:Z Y, (2.5)

are linear continuous operators. Define also the maps

p: Y1 = E, (2.6)
YV, =R, (2.7)
and fR=>Y, (2.8)

and consider for a.a. t € [T}, Ty] the evolutionary variational inequality

(4(t) — Ay(t) — Bo(y(t)) — f(t), n = y(t)) 11+ ¥(n) — () 20, VneYi. 29
2.9

A function y(-) € W(T1,T2)NC (T4, T»; Yy) is said to be a solution of (2.9) if this inequality
is satisfied for a.a. t € [T1,T3).

Remark 2.1 a) In applications the operators A and B represent the linear part of the
system, ¢ is a material law nonlinearity, 1 is a contact-type or friction-type functional,
and f is an outer perturbation.

b) In the contact-free case when ¢ = 0 the evolutionary variational inequality (2.5) —
(2.9) is equivalent to the evolution equation on Y ;

y(t) = Ay(t) + Bo(y(t)) + £(t).- (2.9)

¢) In practice the linear operators A and B from (2.5) can be constructed as follows ([3]).
Suppose that Y; is a Hilbert space with scalar product (-,-); and norm || - ||;, respectively.
Let a(-, -) be a continuous bilinear form on Y7 x ¥7. Choose now an arbitrary Hilbert space
Y, with scalar product (-, -)o and norm ||-||o, respectively, such that the embedding Y; C ¥}
is dense and continuous. It is shown in [3] that then there exists a linear unbounded self-
adjoint operator A with D(A) = Y] and ||Ay|lo = |ly|l1, Vy € Yi. Introduce w.r.t. A
the Hilbert space Y_; as above. Thus we get from a(-,-) the map A € L£(Y},Y_;) by
a(y,n) = (Ay,m)-11,Vy,n € Y. Let AT € L(Y1,Y_1) be the operator which is adjoint to
A in the following sense: (An,y)-11 = (ATy,n)-1,1,¥ € Y1, € Y1. In order to define B
we consider on = x Y] the continuous bilinear form b(-, -) which corresponds to an operator
B € L(Z,Y_) through b(&,y) = (BE,y)-11, VE € E, Vy € Y. O
Throughout this paper we use the following assumptions about the variational inequality
(2.9).

(A1) 9 (0) = 0.



(A2) There exists operators N € L(Y},=) and M = M* € L(=Z, Z) such that

(o (1) — @ (y2), N(y1, —y2))= > (¢ (1) — @ (y2), M (¢ (Y1) — ¢ (12)))=,
Vyi,ys € Y1. (210)

(A3) There exists a quadratic form G on Y; x Z and a continuous functional
® : Yy — R, such that on any time interval [T}, T3], for two arbitrary elements y (), y2(-) €
W(T1,T,), and a.a. s,t € [T1,T3],s < t, we have

t
1
/ G(y1(r) = (1), ¢ (41(7)) = @ (v2(7)))dr = 5 (y1(7) = 12(7)) - (2.11)
Furthermore, there are two constants 0 < p; < ps such that

pullylls < @) < pallylls, Vy e Y. (2.12)

In addition to (A1) — (A3) we suppose that there exists a number A > 0 such that the
following assumptions are satisfied:

(A4) For any T > 0 and any f € L*(0,7;Y_;) the problem

g=(A+A)y+ f(t), y(0) =y, (2.13)

is well-posed, i.e. for arbitrary yo € Yy, f(-) € L*(0,T;Y_;) there exists a unique solu-
tion y(-) € W(0,T) satisfying the equation (2.13) in a variational sense and depending
continuously on the initial data, i.e.

1y Fvom) < eillyolls + c2ll FOIE -1 (2.14)

where ¢; > 0 and ¢y > 0 are some constants.

(A5) Any solution of § = (A+ M)y, y(0) = yo € Yy is exponentially decreasing for
t — +00, i.e. there exist constants c3 > 0 and € > 0 such that

ly ()0 < esellgollo £>0. (2.15)

(A6) The operator A+ A € L(Y;,Y ;) is regular, i.e. for any T > 0,
Yo € Yi,2zr € Yy and f € L*(0,T;Y_) the solution of the direct problem

g=A+Ay+ f(t), y(0) =y,
and the solution of the adjoint problem
i=—(A+ ATz + f(t), 2(T) = 2r

are strongly continuous in ¢ in the norm of Y;.

(A7) The pair (A + M, B) is L*>-controllable, i.e. for arbitrary y, € Y, there
exists a control £(-) € L*(0, +o0; E) such that the problem

y=(A+ M)y + B¢, y(0) = o,
3



is well-posed in the variational sense on (0, +00).

Let us denote by H¢ and L° the complexification of a linear space H and a linear operator
L, respectively, and introduce by x(s) = (sI,— A¢)"'B¢, s € p(A°), the transfer operator,
and by G¢ the Hermitian extension of G. Introduce also for any parameter © € R on
Y x Z¢ the Hermitian form

where the operators N and M are from (A2), the quadratic form G is from (A3). po
steams from (2.12) and 7 is the embedding constant from ¥; C Y.

(A8) a) For all w € R there exists the continuous inverse operator
((lw = NI — At
b) There exists a number © > 0 such that

F(x(iw —N)E,€,0) <0, VEEELEF#D. (2.17)

In case when the property a) of (A8) is not satisfied we use the following assumption.
(A8)’ There exists a © > 0 such that

F(y,&0)

_ <0, (2.18)
@wOeU  [ly[3 + €112

where U = {(w,y,&) € R x Y x E¢|iwy = A% + B¢¢}.

(A9) Suppose that N and M are the operators from (A2), G is the quadratic form from
(A3), O is from (A8) or (A8)’ and 7 is the embedding constant from Y; C Yj. If there
exists a non-negative operator P = P* € L(Yp, Y)) such that

P e L(Y 1,Y;) N L(Y,, Y1) and a number 6 > 0 as solution of the inequality

(A+ M) y+BE Py) 11+ O[(6,Ny)z— (£, ME)z] + G (1.8 +vAp2 |yl
< =6 [llyllf +11€l2] , VE€E Vyey, (2.19)

then

V(Y1) — vy — P(yr — vy2)) +¥(y2) — ¥(y2 + P(yr — 12)) > 0
i Y1,Y2 € Yi . (220)

On Y; the function ¥p(y) := ¢¥(y — Py) — ¢ (y) is convex and lower continuous.
(A10) a) For any f € L2 .([to, +o0); Y 1) and any yy € Y; there exists a unique solution y

loc

of (2.9) on [ty, 00) with y(t9) = yo. On any finite interval [ty, ¢y + T'] this solution satisfies
the inequalities

Yl L2t to+5v1) < ex(llf Il L2cto to+13v1)5 [|%ollo) (2.21)

and

1Yl totorive) < 2(llFllL2roto+7:v-1): [[9ollo) (2.22)



where ¢;(+,),7 = 1,2, are continuous non decreasing with respect to each variable func-
tions. The solution y can be approximated in L?(to, o+ T'; Y1) by a sequence of functions
Yn € Cl(to,to-i-T;}/l), n= 1,2,... .

b) If y, € W(T1,T2) N C(T1,Ts;Yy),n = 1,2,..., are solutions of (2.9) with f = f, €
L?(Ty, Ty;Y_1) and 7}1)120 fo=fin L2(Ty, To; Y_4), nh_)nolo yn =y in C(T7,Ty; Yy) and weakly

in L*(T},Ty; Y1) then y € W(Ty, Ty) N C(T1,Ty; Yp) is a solution of (2.9) with outer per-

turbation f = f.

Remark 2.2 a) Assumption (A2) can be considered as an infinite-dimensional gener-
alization of the sector condition for the nonlinearity ¢ coming from absolute stability
theory ([18]). Assumption (A3) means that there is a generalized potential ® for the
nonlinearity ¢.

b) Under the assumption (A4) the linear system (2.13) with f = 0 generates a Cy-
semigroup of operators in Y;. The operator A+ Al : Y; — Y_; can be considered as an
extension onto the space Y; of the generator A+ Al : D(A + AI) — Y} of the semigroup.
c) If B € L(Z,Y)) the regularity condition (A6) is not required. In this case the solution
theory for the linear system can be considered in the framework of semigroups, i.e. under
weaker conditions than (A6).

d) The assumption (A8) (or (A8)’) is the frequency-domain condition for the solvability
of operator inequalities by the Likhtarnikov-Yakubovich frequency theorem ([12]).

e) In assumption (A9) a generalized non-negativity condition for the contact-type part is
introduced. Unfortunately, for this one has to solve the operator inequality (2.19). Note,
however, that for important classes of operators which occur in (2.19) there exist efficient
algorithms for finding P which are based on operator symbols ([11]).

f) Part a) from (A10) summarizes standard existence and uniqueness properties of so-
lutions of variational inequalities quoted in [4, 15]. Part b) from (A10) describes the
passage to the limit property in the variational inequality as it is shown for classes of
evolutionary inequalities in [15]. O

3 Existence of a bounded solution

In this section we show the existence of at least one bounded on R solution of (2.9).

Together with the exponential stability of solutions, which will be also shown, we derive

the uniqueness of such a bounded solution.

Let J = [T}, T3] be a bounded or unbounded interval of R and Y be a real Hilbert space.

By Cy(J;Y) C C(J;Y) we denote the subspace of all bounded functions equipped with

the norm || f||c, := sup || f(t)||. Here ||-|| is the norm generated by the scalar product in Y.
teJ

Let J =R or J = [T1,+00). The space BS?(.J;Y') consists of all functions f € L2 (J;Y)
for which the value

t+1
191 =sup [ 1) |Par
teJ Jt

is finite.



Lemma 3.1 Assume that the assumptions (A1) — (A9) are satisfied. Then there ezists
a positive operator P = P* € L(Y,,Y) such that P € L(Y_1,Yy) N L(Y,,Y1) and the
functional

V()= 5 Prot  ®), yeYo, (3.1)

with ® from (2.12) has the following properties:
a) If y1(+), y2(-) are solutions of (2.9) on J = [T}, 0c) with f = f; € L3 .(J;Y 1),
1=1,2, then for any s,t € J, s < t, we have

V (1 (r) — ge(n)f + 2 / V (1 (r) — o)) dr

< [ (6~ 501, P () = ) s =5 [ )~ wr)ar . )

b) If y1(-), y2(+) are two solutions of (2.9) on J = [Ty, 00) with f € L2 .(J;Y_1), then for
any to € J and all t >ty we have

V(1 (t) — (1) < eV (31 (to) — y2 (o)) - (3.3)

The number A > 0 in (3.2) and (3.3) comes from (A4) — (A9); the number 6 > 0 in
(8.2) does not depend on the solutions y1, yo-

Proof Due to the assumptions (A5) — (A9) from the Likhtarnikov-Yakubovich frequency-
theorem ([12]) it follows that there exists an operator P = P* € L(Yp,Y) such that
P e L(Y_1,Yy) N L(Y,, Y1), and a number § > 0 such that

(A+ XMy + B¢, Py)_11+O[(& Ny)=— (& ME=] + G (y,€) + v o2llyll?
< =5 [llylR+1€l2], VyeV,VEeE. (3.4)

If we put in (3.4) £ = 0 we get the inequality
(A+ Ay, Py)-in < =dllyli, Vyevi. (3.5)

Using the assumption (A5) it follows from (3.5) that P > 0. Note that P is not necessarily
coercive. In order to get this property we consider the functional (3.1). Due to the
property P > 0 and the assumption (A3) V is coercive.

Now let us prove a). With respect to the solution y; we consider for a.a. t € J the test
function n = y; + P(y2 — y1) in order to derive from (2.9) with f = f; the inequality (we
suppress t in y;)

(11 — Ayr — B (y1) — f1(t), Pya — y1))-1,1
+¥(y +Ply2—v1) =¥ (1) > 0. (3.6)
With respect to the solution y, of (2.9) with f = f, we consider for a.a. ¢t € J the test
function n =y, — P (yo — y1) - This gives
(Yo — Aya — B (32) — fo(t), —P(y2 —y1))-11
+ Y —Plya—11)) — ¥ (32) > 0. (3.7)
6



If we add the inequalities (3.6) and (3.7) we receive

(U = Y2, P(y2 — v1)) -1+ (A(ye — y1) +Blo(y2) —o(y1) ]+ f2 — f1, P(y2 — 1)) -1
+ (W + Py — 1) =¥ (W) + ¥ (2 — Py —y1)) — ¢ (y2) > 0 (3.8)

or, equivalently,

(Y2 — 91, P(y2 — 1)) —1,1— (A(y2 — 1)+ Blo(ye) —@(y1)+ f2 — f1, P(y2 — y1))-1,1
+ Y () =Y+ Plya—y1) + ¥ (y2) =¥ (ya— Plya—y1)) <0. (3.9)

From (3.9) and (A9) it follows that for a.a. t € J
(Y2 = 91, P(y2 —y1))-11
— (A2 —y) + Bl (v2) =0 (W)l + fo = f1, Ply2 = 91)) 10 <0 (3.10)

and, consequently,

(W2 — 91, P(y2 —y1))-1,0 + Aye — y1, P (y2 —y1))o
—((A+ X)) (ya =)+ Blo(y2) = @)+ fao— f1, P(y2 —y1))-1,0 < 0. (3.11)

We use the inequality (3.4) with y = yo — y; and & = ¢(y2) — ¢(y1) to derive from (3.11)
the estimate

W2 — 91, P(y2 —y1)) 11+ A2 —y1, P (y2 — y1))o

+ O[(¢ (y2) — (y1), N(y2 — y1))= — (0(y2) — ¢ (1), M(o(y2) — ©(y1)))=]

+G (W2 —y1, 0 (1) — 0 (1)) +vp2Mllye — vall? = (fa = f1, P (2 — 1)) -1
+0[llyz — willf + Nlo(y2) — ()2 < 0. (3.12)

Along the solution pair y;, y» we have according to (A2) the property

Ol(e (y2) — v(y1), N(y2 —y1))= — () — @ (y1), M(o(y2) — ¢(y1)))=] >0 .
(3.13)

Integration of (3.12) on [s,¢] C J under consideration of (3.13) gives

N =

(y2 — y1, P(ya —y1))ol’ + )‘/t(w —y1, P(y2 — 1))o dr
4 / (£1(7) = fo(r), Py — 1)) _1adr + / G (ys— 1, 0 () — ¢ (1)) dr

t
+ (7o) +6) / lys — il dr < 0. (3.14)

In (3.14) we have used 1 (yo — 1, P(y2— 41))o ‘i = f:(y'g — 11, P(y2 — y1)—1.1d7, a property
which is satisfied for C'! functions y;, yo. According to (A10) we can choose two sequences
of C' functions which approximate y; and y, in L?*(J;Y}), integrate the inequality (3.14)
with some ¢, > 0,&, — 0, on the right-hand side and then pass to the limit for n — oo.

7



From (A3) it follows that

t t
/ G (2 —y1, ¢ (y2) — 0 (11)) dT+7p2A/ ly2 — |7 dr

)
1
> -
2

t
& (g — ) + A / O (ys— 1) dr . (3.15)

Using (3.15) we derive from (3.14) the inequality

%[ =y, Py —y1))o+ @ (vo — )]}

1
+ 2)\/ -1, P(y2—v1))o+ 5 ® (y, — yl)} dr

< / (o) — Fu(7), Plys — )1 dr — 6 / Iy —wlZdr.  (3.16)

Now we prove b). From (3.16) we conclude that with f = f; = f, the function

1
m(t) = 5 [(12(t) = 9:(8), Pya(t) —v1()), + @ (v2() — 1.(1))]
satisfies the inequality m(7)[%L+2 A f 7)dr < 0, from which (3.3) follows immediately.
|
Lemma 3.2 Assume that the assumptions (A1) — (A10) are satisfied and
[ € BS*([ty,00);Y_1). Then for any solution y of (2.9) on [ty, 00) we have
y € Cy ([to, +00; Y5) N BS?([to, +00); V1),
19llcy (o, +o0rv0) < e (y (ko) ll1s 11£11s2) (3.17)
and
Iylls2 < ea(lly(to) llv, [1£1ls2) (3.18)

where ¢;(+,+) : Ry X Ry — Ry,i = 1,2, are non-negative functions, increasing in each
variable and depending on the constant § > 0 of the inequality (3.3) and the embedding
constant of Y1 C Y.

Proof Let us use Lemma 3.1 a) with T} =1, f1 = f, fo = 0,91 = y and y2 = 0. Under
the consideration of 2\ [ "V (y(r)) dr > 0 and the estimate

/ (7). Py(r)) -1 dr < / 1O =il 1P dr

we derive from (3.2) for s,t € J, s <t the inequality

D+ [lEar <IPL [ W @llv@ldr . (319)
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Now, if we put m?(7) := V(y(7)),n(7) := ||y(7)|l1 and k(7) := ||f(7)||-1 we can write
(3.19) in the form

m2(7)|§+5/ n2(7) dr < ||P||/ n(r)k(r) dr (3.20)

This inequality was considered in [15], Ch. 2. Note that from P = P* € L(Y},Y)) and
(2.12) it follows that for the considered 7

m(r) < & (1P I3 + 2l @IR) < 5 (171 +2) Iyl (3.21)

where «y is the embedding constant of the continuous embedding ¥; C Y;. From (3.20)
and (3.21) it follows, as it was shown in [15], that if t — s < 3, then there exists a ¢ > 0
(depending on § and || P||) such that for 7 > ¢,

2

7
m*(7) < e max [[[kls: (1+ (1Pl +72)) 5 s [Im*lle o to42) ] (3.22)

and

?

? )

The assumption (A10) (inequality (2.22) with 7" = 2) implies that

Inlls2 < ¢ max [[lklls> (1+ (1Pl +72) ) = [1m®[|zoeto.t02)] - (3.23)

||y||L°°(t0,to+2;Yo) < CQ( ||f||L2(to,to+2;Y—1)a ”y”O) ) (3'24)

where the function cs(-, ) is described in (A10). Using now the estimate

1220 tor2vs) < 21 flls2 (3.25)

which immediately follows from the definition of || - ||s2, and the inequality (3.22), the
claimed result follows from the estimates (3.24) and (3.25). [

In the next theorem we prove the existence of a unique bounded solution of (2.9) on R.
The essential part of the proof in analogous to the one of Theorem 2.5 in [15]. In our
situation, however, other assumptions and auxilary results are exploited. For this reason
we give the complete proof below.

Theorem 3.1 Assume that the assumptions (A1) — (A10) are satisfied. Then for any
f € BS?2(R;Y_ ) there exists an unique solution y of (2.9) such that
y € Cy(R;Ys) N BS2(R ;).

Proof The uniqueness of a bounded on R solution follows from Lemma 3.1, b).
To prove the existence we consider as in [15] the following approximation problem: Find
for any natural n a solution y, of (2.9) such that y,(—n) = 0 and y, € W([—n, +00)) N
C([—n,+00);Yy) . It follows from (A10) that any such solution exists and is uniquely
defined. Put now for any natural n
— f(t)) t 2 -n,
fn(t)_{ 0’ t<—n,

9



and extend ¥, by zero to the whole axis.
By Lemma 3.2 we have

Y lle,@ye) < c (3.26)

and
[Ynlls2 < ¢, (3.27)

where ¢ > 0 does not depend on n.
Since f,(t) = f(t) = f(t) for t >t == —min{n, m} the inequality (3.26) and Lemma
3.1 b) with ¢y = ¢, ,, imply for ¢t > t,, ,,, the estimate

V(ya(t) = ym(t)) < €27V (gt (tnm)) - (3.28)

From (3.26) and (2.12) we conclude the existence of a constant ¢; > 0, which does not
depend on m and n, such that

V(ymax{n,m} (tn,m)) <. (329)
It follows from (3.28) and (3.29) that
V(yn(t) — ym(t)) < cre™2207tmm) (3.30)

As t,, , — —oo we conclude from (3.30) that {y,} is a Cauchy sequence in C,(RR; Y;) and
consequently in C(R;Yy). Thus in this space there exists lim, o ¥, =: y. By (3.27) the
sequence {y,} is weakly precompact in L (R;Y7). So hm Yp = y in L (R;Yp). From

assumption (A10), b) it follows that y is a solution of (2 9)
Passing to the limit in (3.26) and (3.27) we see that y € Cy(R; Yy) N BS*(R; Y1).

4 Existence of periodic and almost periodic solutions

In this section we derive frequency-domain conditions for the existence of a periodic or
almost periodic solution for the variational inequality (2.9). Note that this result is not
a direct generalization of the ODE situation considered in [18] since some properties
(coercitiveness) of the solutions of operator inequalities in the infinite-dimensional case
are not satisfied.

Let (E,|| - ||g) be a Banach space and let f : R — E be continuous. If ¢ > 0 is a given
number, then 7" € R is called e-almost period of f if sup lf(t+T)— f(t)]|e <e. The

function f is called Bohr almost periodic or shortly almost periodic if for every £ > 0 there
is an R > 0 such that every interval (r,7 + R) C R (r € R) contains at least one e-almost
period of f.

In order to guarantee the existence of an almost periodic solution for (2.9) we need
some additional assumptions. Other types of such assumptions are connected with the
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continuous dependence on parameters of (2.9), see [15]. Note that in the finite-dimensional
setting this type of assumptions is not necessary since in this case Y; = Yj.

(A11) If f € L2 .(R;Y_,) is a given perturbation function in (2.9) under the conditions

loc

(A1) - (A10), {f(-+ o) |o € R} is the set of all translates of f and
{ys(-) |0 € R} is the set of associated bounded on R solutions of inequality (2.9) with
Y, € Cp(R; Yy) N BS%(R; Yy) then there is a constant ¢ > 0 such that for arbitrary o € R

sup |ly.(t)||1 < €. (4.1)
teER

Theorem 4.1 Under the assumptions (A1) — (A10) there exists a unique bounded on
R solution y. of (2.9). This solution is exponentially stable in the whole, i.e. there exist
positive constants ¢ > 0 and € > 0 such that for any other solution y of (2.9) on [tg, 00)
and any t > tg we have

ly(®) = y@)llo < ce = ly(to) — yx(to)llo - (4.2)

If f is T-periodic the solution y, is also T-periodic. If f is almost periodic and (A11) is
satisfied then vy, is an almost periodic solution.

Proof The existence and uniqueness of a bounded on R solution y,(-) of (2.9) follows
from Theorem 3.1. The exponential stability of y,(-) results from (3.3). If f is T-periodic
then y,(t + T) is also a bounded on (—o00, 00) solution of (2.9). Since y,(t) is the unique
bounded solution it follows that y,(t) = y.(t + T) Vt € R.

Suppose that f is almost periodic and consider an arbitrary e-almost period 7T of f, i.e.

sup [f(t+T) = f(B)]-1 <e. (4.3)

teR

Define the function w(t) := y.(t + T) — y.(t) and consider V (w(t)). It follows from (3.2)
that for an arbitrary interval [ty, t] we have

Vi)l + 2 [ Viw()dr

to

< /[—5IIW(T)|I?+(f(T+T)—f(T),PW(T))_l,l]dT- (4.4)

to

Since P is a bounded operator we have the estimate
[(f(r+T) = f(7), Pw()) 1l S F(r+T) = O 1P Jw()llr - (45)
From (4.1) and (4.4) it follows that for a.a. 7 € R
((f(r+T) = f(7), Pw(r)) 11| < 2| P[ce . (4.6)
By the continuous embedding Y; C Y, we have

4 2 2
. lw(T)llg < Sflw()I - (4.7)
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From (4.4), (4.6) and (4.7) it follows now that on [ty, ¢]

Vw(®) < N0V (ule) + ATE [1 o], (4.8)

where ) := 2\ + 72‘572. Since w exists on R and V(w(ty)) in (4.8) is bounded we can, for
fixed t, choose ty — —oo. It follows that on R

V(w(t)) < 2”1;”58 | (4.9)

But the inequality (4.9) shows that any e-period T of f is also a %—period of y,,

considered in the metric introduced on Yy by V. Consequently, the function y, is almost
periodic in Yj. [ ]
5 Example

Let us consider the spaces Y; = L?(0,1) and Y; = W'2(0,1), where Y; is equipped with
the scalar product

1
(u,v); = / (uv + ugvg)dz , Yu,v € WH(0,1) . (5.1)
0

Then there exists ([3]) an unbounded self-adjoint in Y operator A such that D(A) =Y;
and |[Ay|lo = |ly||1, Yy € Y1. From the operator A we can construct the space Y_; which
is the completion of Y, under the norm ||y||_1 = ||[A~'y||o- Thus we get the rigged Hilbert
space structure Y; C Yy C Y ;. Let the operator A € £(Y;,Y 1) be introduced by the
continuous quadratic form

1
a(u,v) = —/ (Qugvy + puv)dr , Yu,ve WH(0,1), (5.2)

0
where a > 0 and 3 > 0 are some parameters. Note that by the continuity of ¢ on Y; x ¥}

this is possible. We choose the space = = R and define the linear operator B : = — Y_;
by the form

b(&,v) = alv(l), VEER VveWh(0,1). (5.3)
As perturbation f we take a linear continuous functional on W'%(0,1) given by
1
f@)v] = / filz,)v(x)dr, VYveW(0,1), (5.4)
0
where f; € L*((0,1) x R) is a continuous periodic or almost periodic in ¢ function.

According to the embedding theory for W12(0,1) C L?(0, 1) this definition is meaningful.
Let the linear continuous operator C : L?(0,1) — R be defined by

Cu = /01 c(@)u@)dz, Vue I2(0,1), (5.5)

12



where ¢(-) € L*(0,1) is a given function. Assume further that g : R — R is a continuous

function. Using the function g we can introduce the nonlinear map
©:L?(0,1) > R by

u € L*(0, B w(-) = Cu(-3 g(w(-)) €R. (5.6)

The operators A, B and C and the nonlinearity ¢ can be considered as linear part and
nonlinearity, respectively, of the abstract evolutionary equation (2.10). If the data are
smooth this equation can be written as boundary control problem ([5, 12])

ou 5 = QUge — Bu+ fi(z,t), 0 <z <1,
u(z,0) = up(x) € L(0, 1),
uz(0,t) =0, ug(1,t) = g (w(t)) , (5.7)
1

w(t) =/ c(x)u(z,t)dx .

0

In order to satisfy for the nonlinearity ¢ the assumptions (A2) and (A3) we assume for
g the following: There exist constants py > 0 and ¢; > 0 such that

0 < (g(w1) — g(wa)) (w1 — wa) < po(wr — w2)2 , Vw,wy €R, (5.8)

and on an arbitrary interval [T}, T3] we have

t
C
/ [CA(y1 — y2) + CB(9(Cy1) — g(Cy2))][g(Cy1) — g(Cya)ldr > 51 |Cyr — Cy2||§\z :
Vyl,yg EW(Tl,TQ), a.a.s,te [Tl,TQ],S<t. (59)

From (5.8) it follows that with ¢(y) = ¢(Cy),N = C and M = ;—0[1] the assumption
(A2) is satisfied, i.e.

1
(p(y1) — o(y2))(Cyr — Cyo) > %(‘p(yl) —¢¥)?, YyLy €Y. (5.10)
The quadratic form G from (A3) is defined through (5.9).
Because of (5.2) we have an ¢ > 0 such that

(Au,u) 10 < — |25 = Bllully < —ellullf — Bllullf, YueW?(0,1). (5.11)

It follows from [13] that (5.11) implies (A4), (A5) and (A7). The validity of (A6) under
our conditions is shown in [5, 12].

Let us assume that the considered class of nonlinearities (5.6), satisfying (5.8), (5.9),
is so that the existence and uniqueness of solutions and the continuous dependence on
parameters in the sense of (A10) are given (see, for example, [15]).

It remains to verify the frequency-domain condition (A8). Using the (formal) Laplace
transform technique we can show that the transfer operator x for the linear part of (5.7)
can be written as

x(s) = Cu(-,s), s C, (5.12)
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where @ = (-, s) is the solution of the boundary problem

SU= iy — B, SEC} (5.13)

Gy(0,8) =0, @y(1,¢) =1.

Let A > 0 (sufficiently small) and © > 0 be positive parameters. Then the frequency-
domain condition (A8) with the parameter py > 0 from (5.8) and 1 as embedding constant
of W2(0,1) C L?(0,1) has with respect to the quadratic constraints (5.9) and (5.10) the
form

1
O [Rex(iw — A) — /L—} +Reiwx(iw —A) + A|x(iw — AP <0, VweR. (5.14)

0
Under the above assumptions and the condition (5.14) the Likhtarnikov-Yakubovich fre-
quency theorem ([12]) states the existence of a positive operator P = P* € L(Y;, Yp) such

that the Lyapunov-type function V' used in the theory of Sections 2 — 4 is given (with ¢;
from (5.9)) by

V() = %/0 (Pu)(z)u(a)da + Ll Vue 12(0,1) (5.15)

If f, in (5.7) is a T-periodic function in time the existence of an unique T-periodic solution
y. € Cp(R;Yy) N BS%(R; Y}) for the abstract to (5.6) problem (2.10) with ¢ = 0 follows
now from Theorem 4.1.
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