
1. Gelfand triples and solution spaces

Suppose Y
0

is a Hilbert space,
(�; �)

0

; k � k

0

are the scalar product resp. the norm on Y
0

A : D(A)! Y

0

is the generator of a C
0

-semigroup on Y
0

,
Y

1

:= D(A) with
(y; �)

1

:= ((�I �A)y; (�I �A)�)

0

; y; � 2 Y

1

;

� 2 �(A) fixed,
k � k

1

corresponding norm
Y

�1

:= completion of Y
0

with respect to the norm
kyk

�1

:= k(�I �A)

�1

yk

0

,
associated scalar product
(y; �)

�1

:= ((�I � A)

�1

y; (�I �A)

�1

�)

0

;

y; � 2 Y

�1

;

) Y

1

� Y

0

� Y

�1

densely with continuous embedding
(Y

�

� Y

��1

; �= 1;0; dense and
kyk

��1

� Ckyk

�

;8y 2 Y

�

) , i. e. Gelfand triple
(Y

1

; Y

�1

) is also called Hilbert rigging of the pivot
space Y

0

;

Y

1

is the interpolation space,
Y

�1

is the extrapolation space, the Gelfand triple can be
extended to a
Hilbert scale fY

�

g

�2R

.
Let y 2 Y

0

; z 2 Y

1

: Then

j(y; z)

0

j = j(�I �A)

�1

y; (�I �A)z)

0

j � kyk

�1

kzk

1

:

Extending (�; z)
0

by continuity onto Y
�1

we obtain
j(y; z)

0

j � kyk

�1

kzk

1

8y 2 Y

�1

;8z 2 Y

1

:

Denote this extension by (�; �)
�1;1

and call it
duality product on Y

�1

� Y

1

.
Suppose T > 0 arbitrary and define the norm inL2(0; T ;Y

j

)

(j = 1;0;�1)

through ky(�)k

2;j

:=

�

T

Z

0

ky(t)k

2

�

dt
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1=2

.



Let L
T

denote the space of functions
y : [0; T ℄! Y

0

s.t. y 2 L2(0; T ;Y
1

) and
_y 2 L

2

(0; T ;Y

�1

), where the time derivative _y is under-
stood in the sense of distributions with values in a Hilbert
space.
The space L

T

(solution space) equipped with the norm

kyk

L

T

:=

�

ky(�)k

2

2;1

+ k _y(�)k

2

2;�1

�

1=2

is a Hilbert space,

Remark 1.1
Denote by C(0; T ;Y

0

) =: C

T

the Banach space of con-
tinuous mappings y : [0; T ℄ ! Y

0

provided with the norm
ky(�)k

C

T

= sup

t2[0;T ℄

ky(t)k

0

L

T

can be continuously imbedded into the space C
T

, i.e.,
every function from L

T

; properly altered by some set of
measure zero, is a continuous function y : [0; T ℄ ! Y

0

and
ky(�)k

C

T

� const � ky(�)k
L

T

:

Example 1.1

Y

0

= L

2

(R

+

;R

m

) pivot space

interpolation space Y
1

= ff 2 L

2

(R

+

;R

m

); supp f compactg

supp f = fx 2 R

+

: f(x) 6= 0g

Y

1

� Y

0

dense

extrapolation space Y
�1

:= closure of Y
0

w.r.t. Y
1

) Y

�1

= L

2

lo


(R

+

;R

m

)

) any Wiener process can be considered as
element of Y

�1



2. Evolutionary variational inequalities

Consider the observed and controlled evolutionary varia-
tional inequality (OCEVI)

( _y �Ay �B�; y � �)

�1;1

+  (�)�  (y) � 0

y(0) = y

0

2 Y

0

; 8� 2 Y

1

; a.e. t 2 [0; T ℄;
�(t) 2 '(t; w(t)) a.e. t 2 [0; T ℄ control;
w(t) = Cy(t) output ;
z(t) = Dy(t) +E�(t) observation

9

>

>

>

=

>

>

>

;

(2:1)

where A : D(A)! Y

0

is generator of a
C

0

-semigroup on the Hilbert space Y
0

;

B : � ! Y

�1

(control operator), D : Y

1

! Z and E :

�! Z (observation operators) are linear bounded opera-
tors,� (control space),W (output space) andZ (observation space)
are Hilbert spaces,
' : R

+

�W ! 2

� (material law map) and
 : Y

1

! R

+

(contact functional) are in general nonlin-
ear,

Definition 2.1 Any function y 2 L
T

satisfying (2.1) is called
a solution of (2.1)

(A1) Problem (2.1) is well-posed on any compact interval
[0; T ℄, i.e., for arbitrary y

0

2 Y

0

there
exists a unique function y(�) 2 L

T

satisfying (2.1) and de-
pending continuously on the initial data y

0

and '.

Special case:
Observed and controlled evolutionary variational equality
(OCEVE)
 � 0 )

( _y �Ay �B�; y � �)

�1;1

= 0 8� 2 Y

0

,

_y = Ay+B� in Y

�1

�(t) 2 '(t; w(t)); w(t) = Cy(t);

z(t) = Dy(t) + E�(t)

9

=

;

(2:2)



Let y be the solution of _y = Ay; y(0) = y

0

2 Y

0

Define the operator eAty
0

:= y(t) 2 Y

0

a. e. t 2 [0; T ℄:
) a) eAt : Y

0

! Y

0

;

b) t 7! e

At

y

0

is continuous in the Y
0

- norm ;
c) eA0 = I

0

, where I
0

is the identity operator
in Y

0

;

d) eA(t+s)

= e

At

e

As

= e

As

e

At

; t; s 2 [0; T ℄

Definition 2.2
a) Suppose F is a quadratic form on W ��

The class of nonlinearitiesN (F) defined by F consists of
all maps ' : R

+

�W ! 2

�

s. t. for any y(�) 2 L2
lo


(0;1;Y

1

) with
_y(�) 2 L

2

lo


(0;1;Y

�1

) and any �(�) 2 L2
lo


(0;1; �) with
�(t) 2 '(t; Cy(t)) for a. e. t � 0, it follows that
F(w(t); �(t)) � 0 for a.e. t � 0:

b) The class of functionalsM(d) defined by a constant
d > 0 consists of all maps  : Y

1

! R

+

s.t. t 7!  (y(t))

belongs for any y 2 L2
lo


(0;1;Y

0

) with _y 2 L

2

lo


(0;1;Y

1

)

to L

1

(0;1; R) satisfying

1

Z

0

 (y(t))dt � d and for any

' 2 N (F) and any  2 M(d) the inequality (2.1) is well-
defined on any time interval [0; T ℄:
c) Any triple of functions (y; �;  ) is called a
response of (2.1) w.r.t. the classes N (F) and M(d) if y
is together with �(t) 2 '(t; Cy(t)) solution of (2.1) for the
given  2 M(d)



Example 2.1 (Likhtarnikov/Yakubovich, 2000)

 � R

n bounded domain, �
 smooth
u

tt

+2"u

t

��u+ �u = f(�)

�

t

� ���+ u� 
g(�) = 0

�

(2.3)

membrane equation
" > 0; � > 0; �; 
 real parameters, of nonlinear thermo-
u deflection, � temperature elasticity

IC : u(x;0) = u

0

(x) ; u

t

(x;0) = u

1

(x) ;

�(x;0) = �

0

(x)

BC: u(x; t) = �(x; t) = 0 ; x 2 �


Class of nonlinearities:
�g(�)� f

2

(�) � 0 8� 2 R (2.4)
e.g., f(�) = �

2

; g(�) = �

3

:

y(x; t) =

2

4

y

1

y

2

y

3

3

5

=

2

4

u

t

u

�

3

5

;

' =

�

f

g

�

=

�

�

1

�

2

�

= �

� A

0

= A

�

0

positive operator generated in
L

2

(
) by (��) (with zero boundary cond.)

D(A

0

) =W

2;2

(
)\

Æ

W

1;2

(
)

� V

s

:= D(A

s=2

0

) ; s 2 R ; with the scalar
product

(u; v)

s

:= (A

s=2

0

u;A

s=2

0

v)  scalar product in is a Hilbert
scale L

2

(
)

� � := L

2

(
)� L

2

(
) - control space
� Y

0

:= V

0

� V

1

� V

1

- pivot space
� Y

1

:= V

1

� V

1

� V

2

- interpolation space
� Y

�1

�

=

Y

�

1

- extrapolation space
scalar product in Y

s

:

(y; z)

s

= (y

1

; z

1

)

s�1

+ (y

2

; z

2

)

s

:



A=

2

4

�2"I �A

0

� �I 0

1 0 0

0 �I ��A

0

3

5

�

generator of a
C

0

semigroup

B =

2

4

�I 0

0 0

0 �
I

3

5

�

control operator

) (A;B) is L2-controllable
(stabilizable with �

1

= �y

1

; �

2

= 0)

� Quadratic constraint:

F(y; �) =

Z




(y

3

�

2

� �

2

1

)dx =

=

Z




[�(x)g(�(x))� f

2

(�(x))℄

| {z }

�0

dx

) F(y; �) � 0 for all y 2 Y
0

and nonlinearities
� satisfying (2.4)

� Observations:

w = (u

t

; u;�) (D = I

0

; E = 0)

or w = (u

tt

; u

t

;�

t

) = w

t

(D =

�

�t

; E = 0)

Example 2.2 Final state estimator (without noise)
Given

_y(t) = Ay(t) + �(t) ; y(�1) = 0

w(t) = Cy(t) ; t � 0

� 2 L

2

((�1;0℄; Y

0

) with compact support.

The system is at rest before � becomes active, i.e. y(t) =
0 if �(�) = 0 for all � � t:

The final state estimation problem for (A;C) is to find a
bounded linear operator



E : L

2

((�1;0℄;W)! Z

z(t) = E w(t) = E Cy(t)

s. t. sup
k�k�1

kE w(t)� y(0)k <+1:

) E : Kalman estimator
z(t) = Az(t) + (�CP)(C z(t)� w(t))

Here P = P

�

: Y

0

! Y

0

is a solution of the Riccati equa-
tion A�P + PA� PP + I = 0:

Example 2.3 u

tt

+ 
u

t

+�u+

�

�x

�

g(

�

�x

u)

�

= 0

u(0; t) = u(l; t) = 0 ; t > 0

u(x; t) = u

0

(x) ; u

t

(x; t) = u

1

(x) ; t > 0; x 2 (0; l)

Point observation operator C:
Y

0

state space of y(t) = [u(�; t); u

t

(�; t)℄

z(t) = Cy(t) := [u(�

1

; t); : : : ; u(�

j

; t); u

t

(�

1

; t); : : : ; u

t

(�

k

; t)℄

2 R

j+k

) C is a bounded operator on Y
0

Example 2.4 Consider the general inequality (2.1) with
Z = Y

�1

and  = 0: Define the observation map by
fy(�); �(�)g 2 L

2

(0;1;Y

1

)� L

2

(0;1; �) 7!

z(�) := Ay(�) +B�(�) 2 Y

�1

:

) z(t) = _y(t) Observation of the velocity

3. The Frequency Domain Theorem

(A 1) The operator A 2 L(Y
0

; Y

�1

) is regular, i.e. for any
T > 0; y

0

2 Y

1

;  

T

2 Y

1

and f 2 L2(0; T ;Y
0

) the solu-
tions of the direct problem

_y = Ay+ f(t); y(0) = y

0

; t 2 [0; T ℄

and of the dual problem

_

 = �A

�

 ; (T) =  

T

; t 2 [0; T ℄

are strongly continuous in the norm of Y
1

.



Remark 3.1 The condition is satisfied if the imbedding
Y

1

� Y

0

is completely continuous, i. e. transforms bounded
sets from Y

1

into compact sets in Y
0

.
(A 2) The pair (A;B) is L2-controllable, i.e., there exists
an operator K 2 L(Y

1

;�) such that the problem

_y = (A+BK)y ; y(0) = y

0

is well-posed on the semiaxis [0;+1).
(A3) Let F(y; �) be a Hermitian form on Y

1

��;

F(y; �) = (F

1

y; y)

�1;1

+2Re(F

2

y; �)

�

+ (F

3

�; �)

�

;

where

F

1

= F

�

1

2 L(Y

1

; Y

�1

) ; F

2

2 L(�; Y

0

) ; F

3

= F

3

� 2 L(�;�)

Define

� := sup

!;y;�

(kyk

2

1

+ k�k

2

�

)

�1

F(y; �) ;

where the infimum is taken over all triples
(!; y; �) 2 R

+

� Y

1

� � such that i!y = Ay + B�; and
assume � < 0 (Frequency-domain condition).

Theorem 3.1 (Frequency Theorem for the Nonsingular Case)
Assume that A 2 L(Y

1

; Y

�1

); B 2 L(�; Y

�1

) and the
Hermitian form F on Y

1

� � satisfy the assumption (A 1)
- (A 3). Then there exist an operator P = P

�

2 L(Y

0

; Y

0

)

and a number Æ > 0 such that

Re(Ay+B�; Py)

0

+ F(y; �) �

� �Æ(kyk

2

1

+ k�k

2

�

);8(y; �) 2 Y

1

�� (3.1)

Proof : Likhtarnikov / Yakubovich, 1976.

Corollary 3.1 Under the assumptions of Theorem 3.1 there
exist an operator P = P

�

2 L(Y

0

; Y

0

) and a number
Æ > 0 s. t. the form V(y) := (y; Py)

0

(y 2 Y

0

)

satisfies for any solution y(�) of (2.1) the inequality



V(y(t))�V(y(s))+

Z

t

s

F(y(�); �(�))d�+

Z

t

s

( (y(�)�

� (�Py(�) + y(�))℄d� + Æ

Z

t

s

kz(�)k

2

z

d� � 0: (3.2)

Remark 3.2 For  = 0 ineq. (3.2) is called dissipation inequality:
It can be considered as generalized energy balance inequality
with the energy storage function V, the energy supply rate
term given by F (influence of the constitutive law), a contact energy
term characterized through P , and a dissipation rate term
depending on Æ.

4. Absolute observation-stability of
evolutionary inequalities

Definition 4.1 The inequality (2.1) is said to be absolutely
observation-dichotomic if for any admissible response fy; �;  g
of (2.1) with y(0) = y

0

and y(�) bounded on [0;1) in Y
0

it follows that

kz(�)k

2

2;Z

� C

1

(kY

0

k

2

0

+ C

2

) ; (4:1)

where the constantsC
1

andC
2

depend only onA;B;N (F)
andM(d):

The inequality (2.1) is said to be absolutely observation-stable
if (4.1) holds for any admissible.

Definition 4.2 For s 2 C n�(A) define the transfer operator of (2.1)
w. r. t. the control w by

�

(w)

(s) = C(sI �A)

�1

B

and the transfer operator of (2.1) w. r. t. the observation z
by

�

(z)

(s) = D(sI �A)

�1

B+E:

(A4) There exists a Æ > 0 s. t.

F((i!I �A)

�1

B�; �) � Æk�

(z)

(i!)�k

2

Z

8i! =2 �(A) ; 8� 2 �:



Theorem 4.1 Suppose that the assumptions (A1), (A2)
and (A4) are satisfied. Then inequality (2.1) is absolutely
observation-dichotomic.

Definition 4.3 The inequality (2.1) is said to be minimally stable
if the resulting equality for � = 0 is minimally stable, i.e.,
there exists a bounded linear operator K : Y

1

! � s. t.
the operator A+BK is stable

(�(A+BK) � fz 2 C : Re z � �" < 0g) and
F(y;Ky) � 0 8y 2 Y

1

:

Theorem 4.2 Suppose that the assumptions (A1), (A2)
and (A4) are satisfied and the inequality (2.1) is minimally
stable. Then this inequality is absolutely observation-stable.

Example 4.1 Beam equation with Hookean material

�A

�

2

u

�t

2

+ 


�u

�t

�

�

�x

�

EA

3

~'

�

�u

�x

��

= 0

u(0; t) = u(l; t) = 0 ; t > 0

u(x;0) = u

0

(x) ; u

t

(x;0) = u

1

(x) ; x 2 (0; l)

~'(w) = 1+ w � (1 + w)

�2

w 2 (�1;1)

Break the stress-strain law ~' into the sum of a
linear term and a nonlinear term ':
�A

�

2

u

�t

2

+ 


�u

�t

�

�

�x

�

EA

3

�u

�x

�

�

�

�x

�

EA

3

'

�

�u

�x

��

= 0

) u

tt

+2"u

t

� �u

xx

= ��(�

�

�x

'(

�u

�x

)) =: �

�

�x

�

�

k

> 0 ; e

k

; k = 1;2; : : : ; eigenvalues and eigenfunc-
tions of the operator (��) with zero boundary conditions
Fourier series (formally): u(x; t) =

P

k

u

k

(t)e

k

;

�(x; t) =

P

k

�

k

(t)e

k

+ Fourier transformation:
�!

2

~u

k

(i!) + 2i!"~u

k

(i!) + ��

k

~u

k

(i!) = ��

p

�

k

~

�

j

(t)

) ~u

k

= �(i!; �

k

)

~

�

k

;

�(i!; �

k

) = (�!

2

+2i!"+ ��

k

)

�1

(�

p

�k);

k = 1;2; : : : :



Functional for the nonlinearity ' 2 N (F);
F(w; �) = �w

2

� �w;

J (w; �) = Re

Z

1

0

(�jwj

2

� w

�

�)dxdt =

Re

Z

+1

�1

(�j~wj

2

� ~w

�

~

�)dt:

j~wj

2

=

P

k

�

k

j~u

k

j

2

=

P

k

�

k

j�(i!; �

k

)j

2

j

~

�

k

j

2

~w

�

~

� =

P

k

p

�

k

~u

k

~

�

k

=

P

k

p

�

k

�(i!; �

k

)j

~

�

k

j

2

) J = Re

Z

+1

�1

�

�

�

X

k

�

k

j�(i!; �

k

)j

2

j

~

�

k

j

2

�

�

P

k

p

�

k

�(i!; �

k

)j

~

�

k

j

2

�

dt

)

Q

k

0

(i!) = ��

k

j�(i!; �

k

)j

2

�

p

�

k

Re�(i!; �

k

) < 0;

8! 2 R ; k = 1;2; : : : :

, Re�(i!; �

k

)� �

p

�

k

j�(i!; �

k

)j

2

> 0

8! 2 R ; k = 1;2; : : : :

�(i!; �

k

) = (�!

2

+2i!"+ ��

k

)

�1

(��

p

�

k

)

Re�(i!; �

k

) = [(��

k

�!

2

)

2

+4!

2

"

2

℄

�1

�

p

�

k

(!

2

���

k

)

5. Global asymptotics of autonomous inequalities

Definition 5.1 Consider the autonomous inequality (2.1)
('(t; w) � '(w)): A solution y(�) of (2.1) is called stationary
if _y(t) = 0 for a. e. t � 0. The set � = fy(�) station-
ary solution of (2.1)g is called the stationary set of (2.1).
For any solution y(�) with initial point y

0

of (2.1) 
t(y
0

) =

fy(t); t � 0g is an orbit through y
0

. The solution y(�) is
called bounded if its orbit is bounded and compact if its or-
bit is contained in a compact set in Y

0

. The autonomous
inequality (2.1) is called dichotomic if any its bounded or-
bit tends to the stationary set � for t ! +1: The au-
tonomous inequality is said to be dissipative if in Y

0

there
exists a bounded absorbing set B

0

s. t. for any bounded
set.



B � Y

0

there exists a t
0

> 0 s. t. y(t; y
0

) 2 B

0

for all
t � t

0

and all y
0

2 B

0

: The inequality is called compactly
dissipative if it is dissipative with a compact absorbing set.
The inequality has a global asymptotics if the orbit of any
its solution tends to � for t!1:

Notation: Suppose �
i

is a connected component of �
and W u

(�

i

) is the unstable manifold of �
i

,
i.e., W u

(�

i

) = fy(�) solution of (2.1): 9t
n

! �1

with y(t
n

)! �

i

for n! +1g.
(For y 2 W

u

(�

i

) it is assumed that there exist solutions
also for t! �1:)

Definition 5.2 A global attractor A of (2.1) is called quasi-
regular if A=

S

i

W

u

(�

i

):

Theorem 5.1 Consider the autonomous inequality (2.1) and
assume that A is a global attractor of (2.1). Suppose that
the inequality is absolutely observation-stable w.r.t. the ob-
servation operator z = Ay+B�: Then the inequality (2.1)
has a global asymptotics and the attractor A is quasiregu-
lar.

6. Stability analysis of OCEVI’s on the
base of measurements

Consider with q 2 Q the parameter-dependent OCEVI

( _y �A(q)y �B(q)� ; y � �)

�1;1

+

+ (�)�  (y) � 0;8� 2 Y

1

y(0) = y

0

2 Y

0

�(t) 2 '(t; w(t));

w(t) = C(f)y;

z(t) = D(q)y+ E(q)� :

9

>

>

>

>

>

=

>

>

>

>

>

;

(6:1)

q

Let Q be a metric space with metric d
For any q 2 Q we suppose:



A(q) : D(A(q))! Y

0

is generator of a
C

0

-semigroup on Y
0

;

B(q) 2 L(�; Y

�1

); C(q) 2 L(Y

1

;W);

D(q) 2 L(Y

1

; Z);

E(q) 2 L(�; Z) :

For y 2 Q and s 2 C n �(A) define

X

(w)

(s; q) = C(q)

�

sI �A(q)

�

�1

B(q)

X

(z)

(s; q) = D(q)

�

sI �A(q)

�

�1

B(q) +E(q)

)

transfer
operators

Introduce the nonlinearities ' : R

+

�W ! 2

�

;

with ' 2 N (F(�; �; q)) wereF is given by

F(w; �; q) = (F

1

(q)w;w)

W

+2Re(F

2

(q)w; �)

�

+(F

3

(q)�; �)

�

with

F

1

(q) = F

1

(q)

�

2 L(W); F

2

(q) 2 L(W;�);

F

3

(q) = F

3

(q)

�

2 L(�) :

Define by J
�

(�; �) : Q� T ! R ; � = 1;2; : : : ; k;

stability functionals, where T is a Hilbert space.
Assume J = (J

1

; : : : ; J

k

) 2 S (a function space),

~

Q(�) := fq 2 Q : J

�

(q; �) � 0; � = 1;2; : : : ; kg:

Suppose Q

abs

� Q is the set of all q 2 Q s.t.(6:1)
q

is
absolute stable with respect to the observation z(�) in the
class N (F(�; �; f))

, 9�

abs

2 T s.t. Q
abs

=

~

Q(�

abs

) :

Consider for N = 1;2; : : : the observation ope-
rators DN and E

N , the observation spaces ZN and the
parameter spaces TM s.t.

z

N

(t) = D

N

y(t) +E

N

�(t) (6:2)

N

with DN

: Y ! Z

N

; E

N

: �! Z

N

;

Z

N

� Z;T

M

� T finite dimensional subspaces : Assume
~

Q(�

M

) = fq 2 Q : J

�

(q; �

M

) �



� 0; � = 1;2; : : : ; kg

andQ
abs

(N) � Q is the set of all q 2 Q s.t. (6:1)
q

; (6:2)

N

is absolutely stable with respect to the observation zN(�)
in the class N (F(�; �; q)),
9M 9�

M

abs

2 T

M s.t. Q
abs

(N) =

~

Q(�

M

):

Theorem 6.1 Suppose that �M
abs

! � for

N !1 and

M !1 in T . Then ~

Q(�) = Q

abs

:


