1. Gelfand triples and solution spaces

Suppose Yy is a Hilbert space,

(-,)o, || - ||o are the scalar product resp. the norm on Yj
A : D(A) — Yy is the generator of a Cy-semigroup on Yo,
Y1 :=D(A) with

(y,m1 := ((BI — Ay, (BT — A)n)o,y,n € Y1,

B € p(A) fixed,

| - || corresponding norm

Y_1 := completion of Y with respect to the norm

lyll-1 == 1(BI — A)yllo ,

associated scalar product

(y,m)-1:= ((BI — A)~ty, (BI — A)~'n)o,

y,m € Y_u,

= Y1 C Yy C Y_; densely with continuous embedding
(Yo C Yo_1,aa = 1,0, dense and

lylla=1 < C|lylla, Yy € Ya) , i. €. Gelfand triple

(Y1,Y_1) is also called Hilbert rigging of the pivot

space Yop;

Y7 Is the interpolation space,

Y_1 is the extrapolation space, the Gelfand triple can be
extended to a

Hilbert scale {Y, }acr.

Lety € Yo,z € Yi. Then

|(y, 2)o| = [(BI — A)~ 1y, (BT — A)z)o| < [lyll-1llz]l1-
Extending (-, z)o by continuity onto Y_; we obtain
|(y; 2)o| < lyll-1llzll1 Vy € Y_1,V2 € V1.
Denote this extension by (-,-)_1,1 and call it
duality producton Y_; X Y7.

Suppose T' > 0 arbitrary and define the normin L2(0, T'; ;)
(] — 17 07 _1)

T
through  ly(lla, = ( / ly(0)]2de) 2.
0]



Let £+ denote the space of functions

y:[0,T] = Yo s.t. y € L?(0,T; Y1) and

y € L?(0,T;Y_1), where the time derivative y is under-
stood in the sense of distributions with values in a Hilbert
space.

The space L (solution space) equipped with the norm

. 1/2. ]
Wlle, := (ly(I32 + 19()N13._1) "2 is a Hilbert space,

Remark 1.1
Denote by C'(0,T;Yy) =: Cr the Banach space of con-
tinuous mappings y : [0, T] — Yp provided with the norm

ly() e, = sup |ly(®)llo
te[0,T]

L7 can be continuously imbedded into the space Cr, i.e.,

every function from L, properly altered by some set of
measure zero, is a continuous function y : [0,7] — Yo
and

ly()lle, < const- [|ly(-)||z,-
Example 1.1
Yo = L?(R.,R™) pivot space
interpolation space Y1 = {f € L?(Ry,R™), supp f compact}

supp f = {z € Ry : f(z) # O}
Y1 C Yy dense

extrapolation space Y_; := closure of Yy w.r.t. Y3
=Y 1 = LIQOC(R+,Rm)

= any Wiener process can be considered as
element of Y_;



2. Evolutionary variational inequalities

Consider the observed and controlled evolutionary varia-
tional inequality (OCEVI)

(y—Ay—B&y—n)-11+¢¥(n) —¥(y) >0 )

y(0) =y € Yo, Vne Y1, ae.t € [0,T],

E(t) € p(t,w(t)) ae.te[0,T] control, s (2.1)
w(t) = Cy(t) output,

z(t) = Dy(t) + E£(t) observation )

where A : D(A) — Yj is generator of a
C'o-semigroup on the Hilbert space Yp,
B : = — Y_1 (control operator), D : Y1 — Z and E

= — Z (observation operators) are linear bounded opera-

tors, = (control space), W (output space) and Z (observation space)
are Hilbert spaces,

e : Ry x W — 2= (material law map) and

Y Y1 — Ry (contact functional) are in general nonlin-
ear,

Definition 2.1 Any function y € Ly satisfying (2.1) is called
a solution of (2.1)

(Al) Problem (2.1) is well-posed on any compact interval
[0,T1], i.e., for arbitrary yo € Y there

exists a unique function y(-) € Lr satisfying (2.1) and de-
pending continuously on the initial data yo and .

Special case:

Observed and controlled evolutionary variational equality
(OCEVE)

Yv=0 =

(y—Ay—B§y—n)-11 =0 Vn € Yo

&

g = Ay+Bf inY.,
Eit) € o(t,w(t)), w(t) =Cy(t), ;(2.2)
z(t) = Dy(t) + EE(t)



Let y be the solution of y = Ay, y(0) = yo € Yo
Define the operator etyy := y(t) € Yo
a.e.te[0,T].
= a) eAt Yo — Yo
b) t — ety is continuous in the Yo- norm ;
c) e40 = Iy, where Iy is the identity operator
in Yo;
d) eA(t—l—s) — cAlgAs — eAseAt, t,s € [O,T]

Definition 2.2

a) Suppose F'is a quadratic formon W x =

The class of nonlinearities N/ (F') defined by F' consists of
allmaps ¢ : Ry x W — 2=

s. t. forany y(-) € L2 (0, 00; Y1) with

loc

y(-) € L? (0,00; Y_1) and any £(-) € L2, (0, co; =) with

E(t) € p(t,Cy(t)) fora. e. t > 0, it follows that
F(w(t),&(t)) > 0fora.e. t > 0.

b) The class of functionals M (d) defined by a constant
d > 0 consists of all maps ¢ : Y1 — Ry s.t. ¢t — ¥ (y(t))
belongsforanyy € L2 (0, 00; Yp) withy € L2 (0, 00; Y1)

loc loc

to L1(0,00; R) satisfying /z,b(y(t))dt < d and for any

0
o € N(F) and any ¢ € M(d) the inequality (2.1) is well-
defined on any time interval [0, T1.

c) Any triple of functions (y, &, %) is called a

response of (2.1) w.r.t. the classes N (F) and M(d) if y

is together with £(t) € o(t, Cy(t)) solution of (2.1) for the
given ¢ € M(d)




Example 2.1 (Likhtarnikov/Yakubovich, 2000)
€2 C R” bounded domain, 952 smooth
uy + 2eur — Au + au = f(©) (2.3)
O —BAO+u—v9(©) = 0 '
membrane equation

e >0, 8> 0,«a, v real parameters, of nonlinear thermo-
u deflection, © temperature elasticity

E: ’U,(CU,O) — uo(w) 7ut($7o) — ’U,l(iv) )
@(.CL’,O) — @0(x)
BC: u(z,t) = ©(x,t) =0,z € 02

Class of nonlinearities:

0g(0) - f2(0)>0 VOEeR (2.4)
eg., f(©)=024(0)=0"°

Y1 Ut
y(z,t) = y2 [ =| u |,

Y3 ©

= (2=

e Ao = Aj positive operator generated in
L?(2) by (—A) (with zero boundary cond.)
D(Ag) = W22(Q)N W2 ()

o V, = D(Ag/z) , s € R, with the scalar

product
(u,v)s 1= (Ag/Qu, Ag/%) < scalar product in is a Hilbert
scale L>(2)
o =:=L?(Q) x L?(2) - control space
o Yo :=Vyx Vi xV; - pivotspace
o Y1 =VixVixW - interpolation space
e Y =V} - extrapolation space

scalar product in Y5 :
(y,2)s = (y1,21)s-1 + (y2,22)s.



[ 2e] —Ap—al O
generator of a
A= ! 0 0 ~ Co semigrou
0 —I  —BAg 0 SeMmIgrotp
[ -1 0
B = o) o) — control operator
0O —vI

= (A, B) is L?-controllable
(stabilizable with £ = ay1,£& = 0)

e Quadratic constraint:

F(y,&) = [ (y3é2 — £3)dx =
/

= [ le@aow) - (O] ds
Q

>0

= F(y,&) >0 forally € Yp and nonlinearities
¢ satisfying (2.4)

e Observations:

w = (ut,u,O) (D =1y, E=0)
0

or w = (uw, us,®r) = wy (D:%

E =0)

Example 2.2 Final state estimator (without noise)
Given

y(t) = Ay(@t)+£&@) , y(—o0) =0

w(t) = Cy(i) ; t<0
¢ € L?((—00,0],Yy) with compact support.

The system is at rest before & becomes active, i.e. y(t) =
0 if &(r) =0 forall r <t.

The final state estimation problem for (A, C) is to find a
bounded linear operator



E : L?((—=00,0]l,W) = Z
z(t) = Ew(t) = ECy(t)

s. t. sup |[|[Ew(t) —y(0)|| < 4oc.
1€lI<1

= FE : Kalman estimator

z(t) = Az(t) + (=CP)(C 2(t) —w(t))

Here P = P* : Yy — Y) is a solution of the Riccati equa-
tion A*P+ PA—-— PP+ 1 =0.

Example 2.3 uy + yur + Au + a% (g(%u)) =0

u(0,t) =u(l,t) =0 ,t>0

u(z,t) = uo(x) , u(z,t) =ui(z),t >0,z € (0,1)

Point observation operator C"

Yy state space of y(t) = [u(-,t), us(-,t)]

z(t): Cy(t) L= [’U,(Oll,t), S ,’U,(O{j,t), ut(ﬁlat)a S 7ut(/8k7t)]
c Rtk

= (C'Is a bounded operator on Yj

Example 2.4 Consider the general inequality (2.1) with

Z = Y_1 and ¢ = 0. Define the observation map by
{y(-),€()} € L?(0,00; Y1) x L*(0, 00; =) >

z(+) 1= Ay(-) + BE(:) € Y_1.

= z(t) = y(t) Observation of the velocity

3. The Frequency Domain Theorem

(A 1) The operator A € £L(Yy,Y_1) is regular, i.e. for any

T > 0,y0 € Y1,97 € Y7 and f € L?(0,T;Yp) the solu-
tions of the direct problem

Q — Ay + f(t),y(O) = yo, t € [O’T]
and of the dual problem

¢ — —A*¢,¢(T) — ¢T7 t € [OvT]

are strongly continuous in the norm of Y7.




Remark 3.1 The condition is satisfied if the imbedding
Y1 C Yy is completely continuous, i. e. transforms bounded
sets from Y7 into compact sets in Yp.

(A 2) The pair (A, B) is L?-controllable, i.e., there exists
an operator K € £(Y1, =) such that the problem

y=(A+BK)y, y(0)=yo
is well-posed on the semiaxis [0, +00).
(A3) Let F'(y, &) be a Hermitian form on Y7 x =,

F(yﬁg) — (Fly,y)—l,l + QRe(Fang)E + (F3£1£)E,
where
F :Fl* E‘C(Ylﬁy—l), F> EE(E,YO)a F3 = F3x EE(E,E
Define

o 1= sup(|lyllf + I€112) T F(y, &),

w,Y,§

where the infimum is taken over all triples
(w,y,€) € Ry x Y7 x = such that iwy = Ay + B¢, and
assume a < 0 (Freguency-domain condition).

Theorem 3.1 (Frequency Theorem for the Nonsingular Case)
Assume that A € £(Y1,Y 1),B € L(=,Y_1) and the
Hermitian form F' on Y; x = satisfy the assumption (A 1)

- (A 3). Then there exist an operator P = P* € L(Yy, Yo)
and a number § > 0 such that

Re(Ay + B¢, Py)o + F(y,¢&) <
< =6(Jlyllz + 11€l12), Y (y, &) € Y1 X

Proof : Likhtarnikov / Yakubovich, 1976.

= 3.1

Corollary 3.1 Under the assumptions of Theorem 3.1 there
exist an operator P = P* € L(Yo,Yo) and a number
d > 0s.t. theform V(y) := (y, Py)o (y € Yp)

satisfies for any solution y(-) of (2.1) the inequality



V(y(£)) =V (y(s))+ / Fy(r), 6(r))dr+ / (W (y(r) -

—p(—=Py(7) +y(7))]d7+5/ lz(m)]|Zdr < 0. (3.2)

Remark 3.2 Forvy = 0 ineq. (3.2) is called dissipation inequality:
It can be considered as generalized energy balance inequality
with the energy storage function V, the energy supply rate

term given by F' (influence of the constitutive law), a contact energy
term characterized through P, and a dissipation rate term
depending on 6.

4. Absolute observation-stability of
evolutionary inequalities

Definition 4.1 The inequality (2.1) is said to be absolutely

observation-dichotomic if for any admissible response {y, £, ¥}
of (2.1) with y(0) = yp and y(-) bounded on [0, o0) in Yo
it follows that

Iz()I2.2 < C1(|[Yollg + C2) (4.1)

where the constants C; and C, depend onlyon A, B, N (F)
and M(d).

The inequality (2.1) is said to be absolutely observation-stable
if (4.1) holds for any admissible.

Definition 4.2 For s € C\p(A) define the transfer operator of (2.1)
w. I. t. the control w by
xW(s) =C(sI —A)'B
and the transfer operator of (2.1) w. r. t. the observation z
by

¥ (s) = D(sI — A)"'B+ E.
(A4) There existsad > 0 s.t.

F((iwl — A)71BE, &) > 8||x® (iw)€]|%
Viw & 0(A), V€ € =.



Theorem 4.1 Suppose that the assumptions (Al), (A2)
and (A4) are satisfied. Then inequality (2.1) is absolutely
observation-dichotomic.

Definition 4.3 The inequality (2.1) is said to be minimally stable
if the resulting equality for n = 0 is minimally stable, i.e.,
there exists a bounded linear operator K : Y1 — = s. t.

the operator A 4+ BK is stable

(c(A+ BK) C{z€C:Rez< —e<0})and
F(y,Ky) >0 VyeY:.

Theorem 4.2 Suppose that the assumptions (Al), (A2)
and (A4) are satisfied and the inequality (2.1) is minimally
stable. Then this inequality is absolutely observation-stable.

Example 4.1 Beam equation with Hookean material

82 ou O (FEA_ [Ou
P 8t2+7t 8x(3¢(8x>>_0
u(0,t) =u(l,t) =0,t>0
’U,(CU,O) — uo(w)a ut(wao) — ’U,l(w), S (Oal)
pw)=1+w—-(1+w)? we(-1,1)
Break the stress-strain law ¢ into the sum of a
linear term and a nonlinear term o:

8u 8 (EA du 8 (EA _ (8u)) —
Aat2+7___x(3 ax) 81’( 9"(%)) 0
= uy + 2eur — aug, = —a(—= ( )) —:a
A, > 0,ep,k = 1,2,. elgenvalues and elgenfunc-

tions of the operator (—A) with zero boundary conditions
Fourier series (formally): u(z,t) = >, u*(t)ey,
E(x,t) = 30, 65 (Dey,
—|— Fourler transformation:

k(zw) + QZwsuk(zw) + oGP (iw) = —avVALE (t)
= ’LL - X(Zw Ak)f )

y(Giw, A\;) = (—w? + 2iwe + arp) H(aVAk),
k=12, ....



Functional for the nonlinearity ¢ € N (F),
F(w,§) = kw? — Ew,
oo

J(w,€) = Re / (k|lw|? — w&)dzdt =
0

400 -
Re/ (k|@]? — DE)dt.

oo

B2 = 3, A2 = 50, AulxCioo, A) 2182
wE = Zk V Ak ﬂkfk — Zk V Ak X(iwaAk)|€k|2

+o0
= J = Re / K(Z/\k|x(iw,/\k)|2|€’fl2>
k

— 3, i, /\k)|é‘k|2] it

= [I5(iw) = sXelx(iw, Ae)[2 — VArRe x(iw, Ay) < 0,
VweR, k=1,2,....

A ReX(iwaAk) - ’i\/>‘_k:|X(iw7>‘k)|2 >0

VweR, k=1,2,....

x(iw, A\;) = (—w? + 2iwe + adp) "1 (—av/Ar)

Re x(iw, Ay) = [(adi—w?)?+4w?e?] v/ A (w? —a;)

5. Global asymptotics of autonomous inequalities

Definition 5.1 Consider the autonomous inequality (2.1)
(o(t,w) = ¢(w)). Asolution y(-) of (2.1) is called stationary
if y(t) = Ofora. e. ¢t > 0. The set A = {y(-) station-
ary solution of (2.1)} is called the stationary set of (2.1).
For any solution y(-) with initial point yo of (2.1) v'(yo) =
{y(t),t > 0} is an orbit through yo. The solution y(-) is
called bounded if its orbit is bounded and compact if its or-
bit is contained in a compact set in Yy. The autonomous
inequality (2.1) is called dichotomic if any its bounded or-
bit tends to the stationary set A for t — 4-o0. The au-
tonomous inequality is said to be dissipative if in Yy there
exists a bounded absorbing set By s. t. for any bounded
set.




B C Yy there existsa tg > 0s. t. y(t,y0) € By for all
t > to and all yo € Bp. The inequality is called compactly

dissipative if it is dissipative with a compact absorbing set.
The inequality has a global asymptotics if the orbit of any
its solution tends to A for t — oo.

Notation: Suppose A; is a connected component of A
and W*(/\;) is the unstable manifold of A;,

le., W*(N\;) = {y(+) solution of (2.1): 3¢, — —o0

with y(t,) — A; forn — 4o00}.

(For y € W¥(A;) it is assumed that there exist solutions
also fort — —o0.)

Definition 5.2 A global attractor A of (2.1) is called quasi-
regular if A = [ JW"(A;).

Theorem 5.1 Consider the autonomous inequality (2.1) and
assume that A is a global attractor of (2.1). Suppose that
the inequality is absolutely observation-stable w.r.t. the ob-
servation operator z = Ay + B£. Then the inequality (2.1)
has a global asymptotics and the attractor A is quasiregu-
lar.

6. Stability analysis of OCEVI's on the
base of measurements

Consider with ¢ € @ the parameter-dependent OCEVI

(y—A(Q)y — B(@)é,y—m)-11+ )
+4¥(n) —¢¥(y) >0,Vn eV
y(0) =yo € Yo

£(t) € p(t,w(t)), > (6.1),
w(t) = C(f)y,
2(t) = D(q)y + E(q)¢. )

Let Q be a metric space with metric d
For any g € (Q we suppose:



A(q) : D(A(q)) — Yo is generator of a
Co-semigroup on Yo,

B(q) € L(Z,Y-1),C(q) € L(Y1, W),
D(q) S E(Yla Z)7

E(q) € L(Z,2).

Fory € Q@ and s € C\ p(A) define

XW(s,q) = C(q) (sI — A(q))_lB(q) transfer
xX@(s,q) = D(q)(sI — A(q))  B(q) + E(q) [operators

Introduce the nonlinearities ¢ : Ry x W — 2=,
with o € N(F(-,-,q)) were F'is given by

F(ﬁja 57 Q) — (Fl (Q)wa w)W+2Re (FQ(Q)’UJ, S)E —|—(F3(C])£, g)E
wit

F1(q) = Fi(q)" € L(W), F2(q) € LW, 2),

F3(q) = F3(q)" € L(Z).
Defineby J,(-,) : Q@ xT —-R,v=1,2,...,k,
stability functionals, where 7 is a Hilbert space.
Assume J = (J1,...,J;) € S (a function space),

Q(r) ={qeQ:J,(¢g7)<0,v=1,2,... ,k}

Suppose Qus C Q isthesetofall ¢ € Q s.t.(6.1), is
absolute stable with respect to the observation z(-) in the
class N (F(-,-, f))

<~ aTabs € 7T s.t. Qabs — Q(Tabs) .

Consider for N = 1,2, ... the observation ope-
rators DY and EY, the observation spaces Z" and the
parameter spaces 7™M s.t.

2N (t) = DVy(t) + ENE() (6.2)n
with DY .Y — ZN EN . = 5 ZN |
ZN c Z, 7™ c T finite dimensional subspaces. Assume
QM) ={qeQ: J(q ™) <



<0,v=1,2,...,k}

and Qus(N) C Qisthesetofallg € @ s.t. (6.1),,(6.2)n
is absolutely stable with respect to the observation zV ()
in the class N (F(-,-,q)) &

IMITM € TM st Qups(N) = Q(+M).

abs

Theorem 6.1 Suppose that 7/ — r for
N — oo and
M — ooinT. Then Q(7) = Qups.



