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1. Setting of the abstract problem

Suppose Y) is a Hilbert space,

A : D(A) — Yjisthe generator of a Cy-semigroup
on Yo,

(-, )o, ||-|o are the scalar product resp. the norm
on YO

Y7 :=D(A) with

(y,m)1 = ((BI — A)y, (BI — A)n)o,

y,m € Yy, B € p(A) fixed,

| - ||1 corresponding norm

Y_ 1 := completion of Y with respect to the norm
lyll—1 := [1(BT — A)~yllo,

scalar product

(y,m—1:= ((BI — A)~ 1y, (BT — A)~1n)o,
y,me Y_q,

Y1 C Yp C Y_4 densely with continuous embed-
ding, I. e. Gelfand triple

(Y1, Y_q) is called also Hilbert rigging of the pivot space

Yo,
the Gelfand triple can be extended to a Hilbert scale

{Y(X}QER'
Define the normin L2(0,T;Y;) (j =1,0,—1)

T
1/2
through  [ly(ll2,; = ( [ Ilv(lZde)"">
0]



Let £ denote the space of functions

y 1 [0,T] — Yy s.t.y € L?(0,T;Y_1) and

y € L2(0,T;Y_1), where the time derivative ¢ is
understood in the sense of distributions with val-
ues in a Hilbert space. The space L1 is equipped
with the norm

llzy == (lvOIB1 + 153, -1

Lety € Yp,z € Y7. Then

Extending (-, z)g by continuity onto Y_1 we ob-
tain

[(y; 2)ol < lyll-1llzll1 VYyeY_1,VzeY.
Denote this extension by (-,-)_1 1 and call it
duality producton Y_1 x Y73.

Consider the control problem

Y Ay + Bu u(t) = p(w(t),t),

w(t) Cy(t) : y(0) =yo (1.1)
z2(t) = Dy(t) + Eu(t) ,

where A : D(A) — Yj is generator of a

Co-semigroup on the Hilbert space Yy, B € L(U,Y_1)

is the control operator, C' € L(Y7, W) is the

observation operator, D € £(Y7,Z) and

E € L(U, Z) are output operators and
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o . W x Ry — U is the nonlinearity.
U, W, Z are Hilbert spaces.

Definition 1.1 F' : Y7 — Y_ 1 is said to be hemicontinuous
ift — (F(u-+tv), w)_q, 1 iscontinuouson [0, 1]

forall u,v,w € Y7.

F Yy — Y_q is said to be monotone if

(F(u) = F(v),u—v)_11 > m|lu — v|]3
Yu,v € Yq.
Theorem 1.1. (V. Barbu)

Let Y7 C Yy C Y_1 be a Gelfand triple, and
let F' : Y1 — Y_1 be a hemicontinuous mono-
tone operator which satisfies

(F(y),y)_11>allyllf+8 Vyev
fora > 0, and 8 € R, and

[FW)l-1 < Clylla +1) Vye Y,

for C > 0. Then, for each yg € Yy and

g € L?(0,T; Y_1) there exists a unique function

y which satisfies

y € L?(0,T; Y1)NC([0,T]; Yo),9 € L?(0,T; Y_1),

y(0) = wo-



2. The frequency theorem

(H1) Aisthe generator of a stable Cy-semigroup
{eA}>p0n Yy, ie, IM > 1,wg > 0 : |[edt]|p <
Me=%0t V¢ >0

(H2) The pair (A, B*) satisfies the abstract
trace regularity condition, i.e., the operator B*eA™
admits a continuous extension, denoted by the

same symbol, from Yy — L2(0,T;U) :
T

[ IB A Bt < opllyll3 VT < 00, vy € Yo,
O

where B* is the dual of B, and B* € L(D(A),U)
(after identifying [D(A)] with D(A).

(H3) F(y,u) = (F1y,y)ot+2Re(Fry,u)y+
—|—(F3’U,,’U,)U,F]_ S E(Y) ) F2 S L(YaU) )
F3 € L(U)

(H4) w,y5u [y [P+ |ul|Z

where the infimum ranges over all triples (w, y,u) €
R x Y7 x U with iwwy = Ay + Bu



Theorem 2.1 (Frequency theorem for the non-
singular case, McMillan, 1997)

Assume the hypotheses (H1)—(H4). Then, there
exists an operator P = P* € L(Y)) s.t.

2Re(Ay + Bu, Py)o + F(y,u) >

s(lullZ + lyll3)  V(y,u) € Y1 xU
forsome § > 0O

Remark 2.1
a) Instead of (H2) the traditional assumption is
the controllability of (A, B).

Definition 2.1 The pair (A, B) is said to be
L2-controllable if, for each yg € Yp, there

exists (y(-),u(:)) € L2(Ry,Yy) x L?(Ry,U)
s.t. y(+) is the (weak) solution of

y = Ay + Bu, y(0) = yo.

In infinite dimension, the L2-controllability of (A, B)
IS too restrictive (for instance, if B is compact, the
pair (A, B) is never exactly L2-controllable; Trig-
giani, 1975)

However, the L2-controllability of (A4, B) holds
for some controlled wave equations and systems
In which A generates a Cp-group on Yg and B is
surjective (Curtain, Pritchhard, 1978)




b) Frequency theorem with controllability or reg-
ularity condition (H2) :

e Yakubovich, 1962, Kalman, 1963; Popov, 1970

- KYP lemma
e Yakubovich, 1974. A, B bounded operators

In Hilbert space
e Likhtarnikov, Yakubovich, 1976: A, B unbounded

but PDE’'s on bounded domain and control
function in the interior, strong regularity as-

sumptions
e Louis, Wexler, 1991: Control in the interior,

removed regularity assumptions
Frequency theo-
rem for boundary

Lasiecka, Triggiani, 1991 }
control problems

McMillan, 1997

Example 2.1 Damped Euler-Bernoulli plate equa-
tion
Q C R? bounded domain with smooth boundary

fwtt—l—’ywt—l—AQ’w:O in Qx (0, 7] ,
v20
w(-,0) = wg, wt(-,0) = wy In Q
w) s~ =0 in 92 x (0,7] =:
Afw|2 —=u In >



uw € L2(3) boundary control

(wo,w1) € Vi x Vo1 , Vi = H}(Q),

Vo1 =H HQ), Vo = L?(Q)
VicVoCV_1 Gelfand triple

yi= (w,wy), Yo=V3 xV_1, U= L2(0Q)
Agh = A?h

D(Ag) = {h € H*(Q) : hjpq = Ahjyq = 0}

L O 1 L 0

FL=I1F=F;3=0

G Is the Green map defined by
h = Gv < {A2h =0, hjoq = 0, Ahjsq = 0}
A is stable on Yj = (H1)

Lasiecka / Triggiani, 1991.:
AT1B € L(U,Yp) = o (t; g, P1)

and B*eA™ (:)}J 8A¢(t) , (w,wy) € Y,
& solution of the assomated homogeneous prob-

8A<D
/ s < onll(@o, eI,

)

= McMillan’s frequency theorem is applicable



Example 2.2 (Likhtarnikov / Yakubovich, 1976)

2 C R"™ domain with smooth boundary
Yo=L2(Q), Y1 =Wl2(Q), Y 1 2V,
U=W-1/22(pQ)

= Y71 C Yy C Y_q Gelfand triple

n
A:D(A) = Yy, alw,z) = / S° wa, 2, dS2,
& i=1
w,z € Wh2(Q)

Be LU, Y 1) :b(u,w) = /u(x)mds

o
we Wh2(Q), ue wW-1/2.2(5Q)

=y= Ay + Bu In Y
y(0) = yo € Yo (2.1)

For smooth data and smooth region (2.1) is equi-
valent to the boundary control problem

wy = Aw+ f in Q x (0, +00)

ow . .
s u(z,t) in 9 x (0,400) =: %
w(z,0) = wo(z) in



3. Absolute stability and instability

Definition 3.1

a) We say that a pair {w(-),u(-)} € L2(0, oco; W) x
L2(0, 00; U) belongs to M(F) if F(w(t), u(t)) <
O fora.e.t > 0.

The class of nonlinearities defined by F' is

N(F) = {p : W xRy — U st for any
w(-) € L2(0, 00; W) follows {w(-), p(w(-))} €
M(F)}

b) The nonlinear system (1.1) is said to be absolutely
stable with respect to the output w in the class N (F)

If for any triple {y, w,u} s.t. y = Ay + Bu,
w = Cyand {w,u} € M(F) we have

@)
[ lwlifrdt < C1llw(@)Fy +
0
(C1 and C5 depend only on N (F)).
c) The nonlinear system (1.1) is said to be absolutely

unstable in the class N (F) if for any ¢ € N (F)
the associated system (1.1) has solutions y with

y(+) € L?(0, o0; Yp).




Theorem 3.1 Assume that the following condi-
tions are satsfied:

1) A is the generator of a stable Cp-semigroup;
2) The pair (A, B*) satisfies the trace property;
336 >0 : F(X(iw)u,u) > 5||X(zw)u||%/
Vue U VYweR:iw&o(A).

Then (1.1) is absolutely stable in the class N (F).

Theorem 3.2 (Likhtarnikov, 1979) Assume:

1) A is the generator of a stable C'g-semigroup
{eM}i>0;

2) {e},~ is extentable to a group on R;

3) The pair (— A, B) is L2-controllable:

4) The frequency domain condition from Theo-
rem 3.1 is satisfied,;

Then (1.1) is absolutely stable in the class N (F).

Definition 3.2We saythat A : D(A) — Yjisthe
generator of an unstable Cp-semigroup on Yy if
A generates a semigroup {e“t},~¢ and
At -
w(A) (= lim M > 0, where w(A) is the
t—00
growth bound.




Remark 3.1 For a Cp-semigroup {e”!'};~q on
the Hilbert space Yy let

s(A) :=sup{Res:s€oc(A)}
be the spectral bound of A.

Under certain assumptions on A (for instance, if
A Is generator of an analytic semigroup) we have
w(A) = s(A).

However, generally we have only w(A) > s(A).
For the two-dimensional wave equation is

w(A) > s(A) (Renardy, 1994).

Theorem 3.3 Suppose that the following condi-
tions are satisfied:

1) A: D(A) — Xy is the generator of an unsta-
ble Cg-semigroup {e“*};~0 on Yp;

2) The pair (A, B*) satisfies the trace property;
3) Frequency domain condition 3) from Theorem
3.1;

Then (1.1) is absolutely unstable in the class N (F).



4. Stability analysis of PDE’s on the
base of measurements

Consider the parameter-dependent problem
i =AlQy+Blou . ut) =pw®), | 4,
w(t) = C(q)y, 2(t) = D(q)y + E(q)u !
(2 a metric space with metric d

For any g € Q we suppose

A(q) : D(A(q)) — Yy is generator of a
Cp-semigroup on Yy,

B(q) € L(U,Y_1),C(q) € L(Y1,W),
D(q) € L(Y1,2),

E(q) € L(U, Z)

operators

X(w)(s, q) = C(q) (sI — A(q)>_1B(q) transfer
X (s,q) = D(q)(sI - A(@))” Blg) + E(q)

o: W xRl 5 U,
e e N(q) :={v:W xRl - U,

F(w(t), p(w(t)),q) <0,t € [0,T],Yw(-) € L?(0,T; W},

F(w7 u, Q) — (Fl(Q)wa ’UJ)W—l—QRe(FQ(CI)W, U)U—I_
(F3(q)u, w)y

F1(q) = F1(q)* € L(W), Fa(q) € LW, U),



F3(q) = F3(q)" € L(U)
Ju(,) Q@ xT —=R,v=1,2,...,k,
stability functionals
T Hilbert space ,J = (J1,...,J) €S

Q(T) : {qEQ Jlj(q77—) §O7V: 1727"' 7k}

Qups C Q isthesetofall ¢ € Q s.t.(4.1)4 is
absolute stable with respect to the output z(-) in
the class N (q)

< Iaps € T St Qups = Q(Tabs)
ZN () = DNy(t) + ENu(t) (4.2)N
DNy 5 zZN EN .U = zZN
ZN ¢ z, TM < T finite dimensional subspaces
Q") ={q€Q: (g,w™)<0,v=1,2,... ,k}

Qus(N) C Qisthesetofallg € Q s.t. (4.1)4,(4.2)y
is absolutely stable with respect to the output Z (-)

in the class N'(q) &

IMITM e TM st Qups(N) = Q(+M).

Theorem 4.1 Suppose that 7 — + for

M — coin T. Then Q(1) = Qs



