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Abstract We consider a control problem for the heating process of a finite solid body. The
heat flux within the body is modelled by the heat equation with nonlinear Neumann boundary
conditions according to Newton’s law. Asinput at a part of the boundary we take the nonlinearly
transformed and modulated heat production of a separate heater which is given by a nonlinear
Duffing-type ODE. This ODE depends on measurements of the temperature within the body
and on Bohr resp. Stepanov almost periodic in time forcing terms. The physical problem is
generalized to a bifurcation problem for non-autonomous evolution systems in Hilbert spaces.
Using energy-type functionals, invariant cones and monotonicity properties of the nonlinearities
in certain Sobolev spaces, we show the existence and uniqueness of an asymptotically stable and
almost periodic in time temperature field which is more regular than other solutions and localized
in space ("breather"). We also derive sufficient conditions to avoid a "temperature collapse" in
the coupled system. A possible application of our localization result seems to be the control of
the temperature distribution within a body in cancer therapy ("regional hyperthermia').

*)Supported by the DFG-Schwerpunktprogramm 1114: Mathematical methods for time series analysis
and digital image processing



1 The physical problem
Suppose that there is a thin elastic plate which is heated from below:

isolated part

—

microwave heating

The elastic equation for the displacements u(z,t) is
Uy — 0p =0
where the stress o is defined by the Duhamel-Neumann law
o =yuz — b, 6=0(x1) the temperature.
This gives the thermo-elastic equation
Ut = V1Ugz — V2l (1)

with the temperature gradient #, and mixed boundary conditions

Yaug _ +Yab_, =0,

Vstg _ + 760, =0
and initial conditions u(-,0) = ug, us(+,0) = u;. The heat equation for the plate is

O0r = 010z — 020 + dgugy (2)
where dguyy is the elastic compression term, with boundary conditions of Neumann-type:

=0, Ou,_, =0(1,1)0cu(?t) (Newton's law)
or 02y =0, 0 = 0*(1,1)—02 (1) (Stefan Boltzmann law) .

Tlz=1

Here 6,,, is the heat supply arising from external heat source.
We assume Mazwell’s equation for heat generation by induction (for convection heating
we have other boundary conditions) = Energy equation for the heat power w(t)

w(t) = Srw(t) + alt). (3)



The control a(-) is assumed as

a(t):/oﬁ(x,t)k(x)dx bl gl + g ],

NG J/
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measurement

nonlinear  external

function excitation

(Point measurement «(t) = 6(xo, 1), xo fixed, is possible.)

In system (1) — (3) various types of instabilities or bifurcations may occur:

Example 1.1

W= w!

solution :  w(t) = (

= blow up at t* =

physical

—+

*

t

hot spot

mathematical

a) hot spots
b) elastic buckling
c) cracks

d) forced thermo-elastic vibrations

blow up of solutions
loss of dissipativity
loss of regularity of the solution

existence of stable almost-periodic solutions

Standard theory for the proof of forced period solutions (Schauder’s fixed point theorem,
Bogolyubov/Krylov method) is not applicable since:

1) all points of the spectrum of the associated linearization problem are nonisolated.
2) the operators on the space of a.p. functions are not completely continuous, i.e. do not

map bounded sets in compact sets.

= need for monotonicity methods

For simplicity we consider the restricted boundary control problem for the temperature

O = 0100 — 20, 91 > 0,05 >0 (4)
O, =0, 0z =0t w)+g@)], 3 €R

W= /1 O(x,t) k(x)dx + 04]p(t, w) + g(t)] , k() kernel function, d, <0 (5)
o(t, w; =w — 05(t)w? Duffing-type nonlinearity, d5(t) > 0 a.e.

Remark 1.1 (4), (5) is also a 1-dimensional dynamic model for a nuclear reactor:

f reactor temperature

w reactor power



0, = 61040 — 620 + 83[0(t, w) + g(t)] (4)
iy 4 as 6(0,t) =0
azly  +oas 6(1,t) =0
W= [ 0(z,t) k(z) da (5)

(47), (5’) is not with boundary heating = control operator is bounded O

2 Almost-periodic functions

Let Trig (R, C) be the space of all trigonometric polynomials with coefficients in C, i.e.

n

Trig(R;C) :={T:R — C|T(z) = Zakei’\k‘”, n €N a, N\, €C}.

k=1
In Trig (R; C) are various metrics possible:
dp(f,g) : =sup|f(z) — g(z)| Bohr distance
teR
T+1 1/2
ds2(f,g) : = sup (/ |f(t) — g(t)|2) dt Stepanov distance (of order 2)
zER T

Definition 2.1 A function f : R — C is called Bohr a.p. (Stepanov a.p.) if there is a
sequence {f,} C Trig (R;C) s.th. dg(fn, f) = 0 (ds2(fn, f) — 0) as n — oc.

Notation: CAP (R;C) continuous Bohr a.p. functions
S?(R; C) Stepanov a.p. functions

Fact: If f € S*(R;C) is equicontinuous = f € CAP(R;C).

Definition 2.2 A subset S C R is relatively dense if there is a compact interval K C R
such that (s + K)NS # 0,Vs € R. A bounded continuous function f : R — C is said to
be Bohr a.p. if for any £ > 0 the set

{r eR| Sup | f(s+7) = f(s)] < e}

of e-almost periods is relatively dense in R.

(Al) e ¢:R xR — R is continuous; ¢ (¢,0) =0, VteR;
e The family {¢(-,w)|w € M, M C R bounded } is uniformly Bohr a.p. for any
bounded set M C R;

e ¢:R—>R,gel? (R;R)NS*R;R)

loc

e dr1 >0,0<ky<Kk3<o00,q <qo,ry<rys.th. :

a) ¢ < g(t) < ¢z for a.e. t from any compact time interval ;
b) (p(t,w) +q)(w—r;) < ky(w—1;)% i =1,2 VteRVYw € [ry,1];
c) kz(wr —wa)? < (G, wi) — G(t, w2)) (w1 — w2) < Kz(wy —wa)?,

VteR, Vwy,wy € [rg,r].



Nonlinearity and forcing function:

o(w) = w — dsw*, 85 >0

Y _W O -
=97, O (w) = 5 it double-well potential
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3 Abstract formulation
Write (4), (5) as ODE in Hilbert space
0= Agv + Bo[o(t, w) + g(t)] (6)
w = Cov + do[o(t, w) + g(t)] (7)
V= WhH2(0,1), Vo := L9(0,1) Vo=V
space of test functions state space dual space (w.r.t. V})
1
(v,9); == / [0 + v, 0,] dx v, €V,
0



Ao : Vi — V_q is given by

1
(Agv, 0) = — / 600 (2)9(2) + 630(2) ()] dx
0
By :R — V_y  (Control operator)
(Bgﬁ,v):(slﬁv(l), V§ER, VUE‘G

i.e. By=0610(x —1) Dirac’s §-function concentrated at z =1
Cy : Vo — R (measurement operator) is given by

1
Cov = / k(x)v(z)dz , Vv e V.
0

(A2) For any T > 0 and (fi, f2) € L?(0,T;V_; x R) the problem

@:AOU+f1,
u';:C’gv+f2 (8)

is well-posed, i.e. there exists a solution depending continuously on the initial data and

[fuls 1fl.

(A3) 3\ > 0 such that Ay + A is a stable operator, i.e. any solution of
v = (Ao + A)v,v(0) = vy, tends to zero as t — +o0.

(A4) The solution of (8) and of the adjoint system

h=—(4) = M)y + fi
Zz—c*w—)\Z—FfQ

are continuous in ¢ in the norm of V; x R.
(A5) The pair (Ag, By) is L*-controllable, i.e. for any vy € Vj there exists a control
a(+) € L*(0,00; R) such that o = Agv + Boar, v(0) = vy has solutions on R, .

(A6) Let x(p) = Co(Ag — pI) !By, p € C, the transfer operator function of (6), (7).
There exists a A > 0 such that

Ao + Re(—iw — N x(iw — A) + 51 | x(iw — A) —dp > < 0,w € R, .

(Frequency domain condition for the ezistence of invariant cones)

(AT) There exists a variational solution of (6), (7).

(4%) 1 (i) — do
+ Re - .
K3 — Ko iw + Ko (x(iw) — dp)

(Frequency domain condition for local dissipativity)

>0, YweR

A9) The operator Ao r2Bo is stable.
Co  Kod
0 Kalp



Theorem 3.1 Assume that for (6), (7) the assumptions (A1) — (A9) are satisfied. Then

we have:

a) There exists a closed, positively invariant and convex set G such that

{(vyw) e Vi xR|v =0,w € [ro, ]} C G C{(v,w) € Vi x R|w € [rq, 1]}

b) For any g € S*(R;R) system (6), (7) has a unique Bohr a.p. solution (v.,w.) in G
and this solution is exponentially stable inside G.

e  (Geometrical interpretation

b2 = (v, w) £ <€y
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4 Application to the heating problem / results
(AT): Variational solution of (6), (7)
A pair of functions (0(x,t), w(t)) is a weak solution of (4), (5) on (0,7T) if

0(-,t) € WhH(0,1) w,w € L*(0,T),

/0 { /01[97% — (61021 + 020n)] dx + 0163[0p(t, w) + g(t)] n (1, t)}dt —0,

| g+ ([ ook de+oote.0) + g0l ¢ 0} i =0,
0 0 (10
V  smooth test function n(z,t), n(x,0) =n(z,1) =0,
vV smooth test function ((¢), ((0) =((T) =0.

(A6):
1
Transfer function: x(p) = / 0(z,p) dr where 0(x,p) is the solution of the BVP

0
(k(l‘) = ]_, 53 = ]_, 54 = —]_, 55(t) = 55) :

pé = (Sléu - (525 s
é\;=0 — 0, §|Ix=1 — 1 3
~ coshv/p+dyx
= O(z,p) = : ,
VP + 0o sinh \/p + 09

1 ! 1
= = hy/p+dpdr = :
X(p) V' P + (52 sinh \Va % + (52 /0 €08 b 24% P + (52

= sufficient to assume that

2
1) < eteR,
o) < 3| e
/{2 — ¢/ (rl), K)3 — 1 i (Al) x — 0 LA
1
= Oy = 010, — 020 [ — 0650
x(p) D+ 05 t 1 2 2
A € (0,0) = (A3) —000 ~—— cooling
)\2—(52)\+f€1§0 :>(A6)

=1 heating

w — dsw” +g(t)
$(w)

02 > 4k = (A3) + (A6)--» cooling condition

8



= slope condition

nonlinearity of the heater

Theorem 4.1 3 closed, positively invariant and convex set G s.th. inside G there is a
unique Bohr a.p. solution (0.,w,.) which attracts exponentially for t — 400 all other
solutions starting in G.
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e N admissible initial states for the
= heating process
TN
A _

possibly unbounded solutions

Localization results

e w(t) €[re,r1], t>ty, = stable heating production process

o 0.(-,t) € Vi = WH%(0,1)
2
= fol [Hf(x,t) + <%9*(x,t) ] dr <oo, t>1

= localized in space variable z solution 6, (“breather”)

e regularity of #, = no hot spots



