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1. Coupled system of Maxwell’s equations and heat equation

Let Ω ⊂ R3, ∂Ω the smooth enough boundary,

Fig. 1

εEt + σE = rotH,
µHt + rotE = 0,
θt −∆θ = σ|E|2,

(1)

where E(x, t) is the electric field, H(x, t) is the magnetic field,
θ(x, t) is the temperature, σ(θ) is the electrical conductivity, ε(x)
is the electric permittivity, µ(x) is the magnetic permeability,
(x, t) ∈ QT := Ω× [0, T ).

E(x, t) = (E1(x, t), E2(x, t), E3(x, t), x = (x1, x2, x3),

rotE =
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q = σ|E|2 is Joule’s heat

Fig. 2
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Initial and boundary conditions
(Landau/Lifshetz, Electrodynamics):

ν × E(x, t) = ν × G(x, t), where ν is the normal to the boundary
∂Ω, G(x, t) is some function.

θν = ν · ∇θ = 0, (x, t) ∈ ST := ∂Ω× [0, T ],

E(x,0) = E0(x), H(x,0) = H0(x), θ(x,0) = θ0(x), x ∈ Ω,

E0(x), H0(x), and θ0(x) are some functions.

2. The one-dimensional case

Suppose that QT = {(x, t)|0 < x < 1,0 < t < T} and E(x, t) =
(0, e(x, t),0), H(x, t) = (0,0, h(x, t)).

Fig. 3

Rewrite the previous system in the form


























εet + σe = −e2hx ,
µht + ex = 0 ,
θt − θxx = σ|e|2 , x ∈ (0,1), t > 0 ,
e(0, t) = f(t), θ(0, t) = 0 , t > 0 ,
e(x,0) = e0(x), h(x,0) = h0(x) , x ∈ (0,1) ,
θ(x,0) = θ0(x) .

(2)
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We assume that w(x, t) :=
t
∫

0

e(x, s)ds and ε(x) = µ(x) = 1

and derive the following system:


























wtt = wxx − σ(θ)wt ,
θt − θxx = σ(θ)w2

t ,
w(0, t) = f1(t), w(1, t) = f2(t) ,
θ(0, t) = θ(1, t) = 0 ,
w(x,0) = w0(x), wt(x,0) = w1(x) ,
θ(x,0) = θ0(x).

(3)

Fig. 4

Assumptions

(A1) 1) σ(z) is piecewise C1 on (0,∞).

2) There exist constants 0 < σ0 ≤ σ1, such that
σ0 ≤ σ(z) ≤ σ1, for any z ≥ 0.

3) There exists a constant σ2, such that σ(z)z ≤ σ2,
for any z ≥ 0.

(A2) 1) θ0(x) is nonnegative and of class C2(0,1).

2) w0(x), w1(x) are of class C4(0,1) and f1(t), f2(t)
are of class C2.



5

Remark 1

Hölder spaces (Ladyzhenskaya, Solonnikov, Ural’ceva, 1968)

Suppose Ω is a bounded region in Rn.

Cα
(

Ω̄
)

=

{

f ∈ Cb

(

Ω̄
)

: sup
t,s∈Ω̄,t6=s

|f (t)− f (s)|
|t − s|α < +∞

}

Cα,0
(

Ω̄× [a, b]
)

=
{

f ∈ C
(

Ω̄× [a, b]
)

: f (·, t) ∈ Cα
(

Ω̄
)

∀t ∈ [a, b]
}

C0,α
(

Ω̄× [a, b]
)

=
{

f ∈ C
(

Ω̄× [a, b]
)

: f (x, ·) ∈ Cα [a, b] ∀x ∈ Ω̄
}

Cα,α

2

(

Ω̄× [a, b]
)

= C0,α

2

(

Ω̄× [a, b]
)

∩ Cα,0
(

Ω̄× [a, b]
)

C2+α,1+α

2

(

Ω̄× [a, b]
)

=
{

f ∈ C2,1
(

Ω̄× [a, b]
)

:

ft, fxixj
∈ Cα,α

2

(

Ω̄× [a, b]
)}

.

Under the assumptions (A1)-(A2), the system has a classical unique
global solution(Yin) (w, wt, θ) on QT = (0,1) × (0, T ), for any
T < ∞. Furthermore, w(x, t) ∈ C3,3(Q̄T), θ(x, t) ∈ C2+α,1+α

2(Q̄T)
for some α ∈ (0,1).

3. Almost periodic perturbations

Let f1(t) and f2(t) be are almost periodic functions.

Definition 1 A scalar continuous function f : R → R , is called
almost-periodic in the sense of Bohr, if for every ε > 0 there exists
an L = L(ε) such that every interval [t0, t0+L] contains at least
one number α for which |f(t+ α)− f(t)| < ε, t ∈ R.

Example 1

a) periodic functions: cos t, sin t etc.

b) a1 cosω1t+ a2 cosω2t, ω1/ω2 irrational, a1 6= 0, a2 6= 0
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4. Cocycles in infinite-dimensional phase space

Definition 2 Let (P, ρ) be a complete metric space,
{τ t}t∈R : P → P is a continuous map satisfying

1) τ0(·) = idP ,

2) τ t+s(·) = τ t ◦ τ s, ∀t, s ∈ R.

Then ({τ t}t∈R, P ) is called base flow.

Example 2

Shift map τ t(p) := p+ t, ∀t, p ∈ R = P

Definition 3 Let X be a complete metric space.
A cocycle over the base flow {τ t}t∈R is a family of maps
{ϕt(p, ·) : X → X}t∈R,p∈P such that

1) ϕ0(p, ·) = idX , ∀p ∈ P ,

2) ϕt+s(p, ·) = ϕt(τ s(p), ϕs(p, ·)), ∀t, s ∈ R, ∀p ∈ P .

Fig. 5
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5. Constructing a cocycle for the microwave heating problem

Introduce the auxiliary functions f(x, t) = f1(t)(x−1)+ f2(t)x,
x ∈ (0,1), t ≥ 0, W (x, t) = w(x, t) − f(x, t), V (x, t) =
Wt(x, t)− ft(x, t). Rewrite equation (3) as the first order system



































Wt = V − ft,
Vt = Wxx − σ(θ)V + ftt,
θt − θxx = σ(θ)V 2,
W (0, t) = W (1, t) = 0, θ(0, t) = θ(1, t) = 0,
W (x,0) = w0(x)− f(x,0),
Wt(x,0) = w1(x)− ft(x,0),
θ(x,0) = θ0(x).

(4)

Then (4) can be formally written as system

du

dt
= Au+Bg(V, θ) + F (t), (5)

where u = (W, V, θ), F (t) = (−ft, ftt,0), A, B are linear
operators.

If (W (x, t), V (x, t), θ(x, t)) is a solution of (4), we can write it as

u(t, t0, u0) = (W (·, t), V (·, t), θ(·, t)),
u0 = (w0(x)− f(x,0), w1(x)− ft(x,0), θ0(x)).

Consider the shift map τ t : R+ → R+ and the family of mappings
{ϕt(t0, ·)}t,t0∈R+

such that

ϕ(·)(·, ·) : R+ × R+ × X → X,
τ t(t0) = t+ t0,
ϕt(t0, u0) = u(t+ t0, t0, u0),

for any t ∈ R+, t0 ∈ R+, u0 ∈ X, where X is the Banach space
X = H1

0(0,1)× L2(0,1)× L2(0,1) with the norm
‖ (W, V, θ) ‖2X=‖ W ‖2H1

0

+ ‖ V ‖2L2 + ‖ θ ‖2L2.
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6. Existence of an almost periodic solution

Definition 4 A continuous function y : R+ → X is called an
integral of the cocycle on R+, if ϕt(s, y(s)) = y(t + s) for all
t, s ∈ R+.

The integral y : R+ → X of the cocycle is said to be

1) uniformly stable if for any ε > 0, there exist δ = δ(ε) > 0
such that

ϕt(s, Nδ(y(s))) ⊂ Nε(y(t+ s)), t, s ∈ R+ ,

2) uniformly asymptotically stable (UAS) if it is uniformly stable
and there exist a δ0 > 0 with the property that for any ε > 0,
there is a t0 > 0 such that

ϕt(s, Nδ0
(y(s))) ⊂ Nε(y(t+ s)), t ≥ t0, s ∈ R+ .

Theorem 1 System (2) has an almost periodic solution which is
uniformly asymptotically stable.

Idea of the proof: We consider the functional

Φ(W, V, θ) =

1
∫

0

(W 2
x +2λWV + V 2+ aθ2)dx,

where λ > 0 and a > 0 are some parameters and show that each
solution of (4) is bounded in future, uniformly asymptotically stable
and has a compact orbit.

Consider the system (4) with initial-boundary conditions

W (x,0) = p sin(πx),
V (x,0) = 0, θ(x,0) = 0,

W (0, t) = sin(t) + sin(
√
2t), W (1, t) = 0,

θ(0, t) = θ(1, t) = 0.
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Fig. 6

Reference

[1] Yu. Kalinin, V. Reitmann and N. Yumaguzin, Asymptotic be-
havior of Maxwell’s equation in one-space dimension with thermal
effect, submitted for publication in AIMS Journals.

7. Existence of the global attractor for the 1-dimensional
microwave heating problem

We consider the system

wtt − wxx + σ (θ)wt = 0, 0 < x < 1, t > 0
θt − θxx = σ (θ)w2

t , 0 < x < 1, t > 0
(6)

with boundary conditions (defining the set Ξ)

w (0, t) = w (1, t) = 0, t > 0
θ (0, t) = θ (1, t) = 0, t > 0

(7)

and initial conditions

w (x,0) = w0 (x) , wt (x,0) = w1 (x) , θ (x,0) = θ0 (x) , (8)
x ∈ (0,1)
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We make the following assumptions:

(A3) w0 ∈ C3 [0,1] , w1 ∈ C3 [0,1] , θ0 ∈ C2+α [0,1]

(A4) Compatibility conditions (defining the set Λ)

θ0 (0) = θ0 (1) = 0, w0 (0) = w0 (1) = 0,
w1 (0) = w1 (1) = 0

θ′′0 (0) = θ′′0 (1) = 0, w′′
0 (0) = w′′

0 (1) = 0

(A5) σ is piecewise C1 on [0,+∞) and there exists M > 0 and
k ≥ 0 such that 0 ≤ σ (z) ≤ M(1 + z)k,∀z ≥ 0

Theorem 2 (Yin, 2001) Under the assumptions (A3) – (A5) the
system (6) - (8) has a unique global solution (w, θ) with
θ ∈ C2+α,1+α

2

(

Q̄T

)

, w ∈ C3,3
(

Q̄T

)

for any T > 0, where
QT = (0,1)× (0, T ].

Idea of the proof: Define the phase space

X = (C3 [0,1]× C2 [0,1]× C2+α [0,1]) ∩ Λ ∩Ξ

The norm is induced from H1
0 × L2 × H1

0

‖(w, v, θ)‖2X = ‖wx‖2L2 + ‖v‖2L2 + ‖θx‖2L2, where

‖u‖L2 = (
∫ 1

0
u2dx)1/2.

Define the map ϕt : X → X:

ϕtu0 = u (t) = u (t, u0) ,

where u (t) = (w (t) , v (t) , θ (t)) is the solution with initial data
u0 = (w0, w1, θ0)

σ : R+ → R is called Lipschitz if ∃L > 0 ∀x, y ∈ R+ :

|σ(x)− σ(y)| ≤ L|x − y|
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Theorem 3 Suppose additionally that σ is Lipschitz and 0 < σ0 ≤
σ (z) ≤ σ1,∀z ≥ 0. Then the mapping ϕt : X → X is continuous
for any t ≥ 0.

Proof u = (w (t) , v (t) , θ (t)) , ū =
(

w̄ (t) , v̄ (t) , θ̄ (t)
)

are so-
lutions with initial data u0 = (w0, v0, θ0), ū0 =

(

w̄0, v̄0, θ̄0
)

.

w̃ := w − w̄

θ̃ := θ − θ̄

w̃tt − w̃xx +
(

σ (θ) v − σ
(

θ̄
)

v̄
)

= 0 (·, w̃t)

θ̃t − θ̃xx = σ (θ) v2 − σ
(

θ̄
)

v̄2
(

·, θ̃t

)

1)1
2

d
dt

(

‖w̃x‖2+ ‖w̃t‖2
)

≤ C
(

∥

∥θ̃
∥

∥

2
+ ‖w̃t‖2

)

2) 1
2

d
dt

∥

∥θ̃x

∥

∥

2
+
∥

∥θ̃t

∥

∥

2 ≤ C
∥

∥θ̃
∥

∥

2
+ C‖w̃t‖2

d
dt
Φ(t) ≤ CΦ(t), and Φ(t) = ‖w̃x‖2+ ‖w̃t‖2+

∥

∥θ̃x

∥

∥

2

Φ(t) ≤ Φ(0) ect

C denotes different constants that may depend on T, ‖u0‖, ‖ū0‖
¥

Theorem 4 The initial-boundary problem (6) – (8) defines a dy-
namical system on X.

8. Absorbing set

Definition 5 The set A ⊂ X is called a global attractor (B-attractor)
for the dynamical system

(

{ϕt} , X
)

if it is compact, invariant and
attracts all points (bounded sets) of the space X.
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Definition 6 The set Z ⊂ X is called absorbing for the dynamical
system

(

{ϕt} , X
)

if for any bounded that M ⊂ X there exists a
t0 = t0 (M) such that ϕtM ⊂ Z, ∀t ≥ 0.

Fig. 7

Idea of the proof: Find a smooth functional Φ on X such that

d

dt
Φ
(

ϕtu
)

+ c1Φ
(

ϕtu
)

≤ D1, ∀t > 0

Φ(u) ≥ c2‖u‖2 − D2,∀u ∈ X

where c1, c2, D1, D2 > 0.

Additional assumptions

(A6) σ (θ) θ ≤ σ2 for θ < R

(A7) ∃σ0, σ10 < σ0 ≤ σ (θ) ≤ σ1

(A8) There exist 0 < λ < 1 and a > 0 such that

4λσ0 − 4λ2 − 2λaσ2 − λ2σ21 > 0

‖u‖L∞ = ess sup{|u(x)| : x ∈ (0,1)}
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Theorem 5 The solution components of (6) – (8) wx and wt decay
to zero exponentially in L2 (0,1), θ decays to zero in L∞ (0,1)

with rate Ct−
1

2 and exponentially in L2 (0,1), when ‖θ‖L∞ < R.

‖u(t)‖L2 ≤ C1e−C2t‖u(0)‖, ∀t ≥ 0

Corollary 1 Each neighborhood of zero is an absorbing set for (6)
– (8).

Idea of the proof:

Consider the functional on X

Φ(w, v, θ) =

∫ 1

0

(

w2
x +2λwv + v2+ aθ2

)

dx

Differentiating Φ with respect to the system we obtain (using the
Poincare inequality and integration by parts):

d

dt
Φ(t) =

∫ 1

0

(

−λw2
x − λσ (θ)wv+

(λ − σ (θ) + aσ (θ) θ) v2 − aθ2x
)

dx ≤ −C3Φ

Theorem 6 Let the assumptions 1), 2) be satisfied for ‖θ‖L2
>

M . Then the ball {(w, v, θ : Φ (w, v, θ) < M} is an absorbing set
for the system (6) – (8). If additionally we have ‖θ‖L∞

< R, the
attraction rate is exponential.

9. Use of the frequency domain method

A similar system was considered by Likhtarnikov and Yakubovich
(1977):

wtt +2εwt −∆w + αw = f (θ) ,
θt − β∆θ + w − γg (θ) = 0 ,

w (x,0) = w0 (x) , wt (x,0) = w1 (x) , θ (x,0) = θ0 (x) .
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Nonlinearities f and g satisfy the following conditions:

θg (θ)− f2 (θ) ≥ 0 ,
∃G : G (θ) ≥ 0 : G′ (θ) = g (θ) .

Consider the equation

ẏ = Ay +Bξ ,

w = Cy .
(9)

We introduce the spaces:

Y0 is a Hilbert space

Y1 = D (A) is a Hilbert space dense in Y0, A is a linear self-adjoint
operator,

Y−1 is anti-dual to Y1 (Y−1 is the closure of Y0 with respect to the
scalar product (η, %)−1 =

(

A−1η, A−1%
)

0
) ,

Y1 ⊂ Y0 ⊂ Y−1 is a Hilbert space rigging structure,

Ξ and W are Hilbert spaces,

B, C are linear operators Ξ → Y−1, Y0 → W ,

F j(y, ξ) are Hermitian forms on Y1 ×Ξ, j = 1, . . . , m ,

F j(y, ξ) = (F j
1y, y)−1,1+2Re (F j

2y, ξ)Ξ+ (F j
3 ξ, ξ)Ξ,

"Control": ξ = ϕ (y)

Consider the set N = ∩m
1 Nj of processes (y (·) , ξ (·)), satisfying

the constraints
F j (y (t) , ξ (t)) ≥ 0

(local constraint) or
∫ tk

0

F j (y (t) , ξ (t)) dt ≥ γj

(integral constraint)
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Fig. 8

(Π0 (iω) ξ, ξ) =

m
∑

j=1

τjF
j (χ (iω) ξ, ξ) + δCχ (iω) ‖ξ‖2,

where χ (iω) = (iωI − A)−1B is the frequency characteristic of
the system (9).

Definition 7 The system (9) is called absolutely W -dichotomic if
for any process p ∈ (L+ p0) ∩ N , the state of which is bounded
‖x (t)‖0 ≤ C0 ∀t ≥ 0, we have

w (·) ∈ L2 (0,+∞;W ) , ‖w (·)‖22,W ≤ C
(

‖x0‖20+
∑

γi

)

.

(10)

Definition 8 The system (9) is called absolutely W -stable, if for
any process p ∈ (L+ p0) ∩ N we have (10).

Theorem 7 (The quadratic criterium of absolute stability of Likhtarnikov
and Yakubovich)

Let the following conditions hold:

1) The pair (A, B) is L2-controllable ;
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2) A has no spectral points in some neighborhood of the imagi-
nary axis ;

3) The system (9) is minimally stable in the class N .

Then the system (9) is absolutely stable if and only if the frequency
domain-condition is satisfied:

∃δ > 0 ∀ω ∈ R ∀ξ ∈ Ξ :

F (χ (iω) ξ, ξ) ≤ −δ‖ξ‖2 .

10. Application of the frequency-domain method

Define the system
ẏ = Ay +Bξ ,

y(x, t) =





y1
y2
y3



 =





wt(x, t)
w(x, t)
θ(x, t)



 ,

A =





−σ0I −A0 0
I 0 0
0 0 −A0



 , B =





I 0
0 0
0 I





A0 is the operator defined by −∆ with homogeneous boundary
conditions.

Notations:

σ(θ) = σ0+ σ̂(θ), σ0 > 0

ξ(x, t) = ϕ (y) =

(

− ˆσ(θ)wt(x, t)
(σ0+ σ̂(θ))w2

t (x, t)

)

{λk}∞k=1 are the eigenvalues of A0,

0 < λ1 ≤ λ2 ≤ . . . λk → +∞,
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{ek}∞k=1 are the eigenfunctions which define an orthonormized ba-
sis in L2.

wk (t) , θk (t) , ξk (t) are the Fourier coefficients of functions w (x, t),
θ (x, t),ξ (x, t) , respectively with respect to {ek}.

ũ(iω) =
∫∞
0

e−iωtu(t)dt

Decompose solution components by the basis and take the Fourier
transform in t (k = 1,2, ...):

−ω2w̃k(iω) + iωσ0w̃k(iω)− λkw̃
k(iω) = ξ̃k

1(iω) ,

iωθ̃k(iω) + λkθ̃
k(iω) = ξ̃k

2(iω) .

From here we obtain:

w̃k(iω) = ξ̃k
1(iω)χ0(iω, λk) ,

θ̃k(iω) = ξ̃k
2(iω)χ1(iω, λk),

where

χ0(iω, λk) =
(

−ω2+ σ0iω + λk

)−1
,

χ1(iω, λk) = (iω + λk)
−1 ,

(

Π0 (iω) ξ̃, ξ̃
)

=
∑

k

(

Πk
0 (iω) ξ̃k, ξ̃k

)

.

Let us consider two quadratic constraints:

1) F 1(y, ξ) =
∫ 1

0
y1ξ1dx =

∫ 1

0
wt(x, t)σ̂(θ)dx ≥ 0 ,

(

Πk
0 (iω) ξ̃k, ξ̃k

)

= Re
(

−¯̃ξk1w̃k
t

)

= −σ0ω2

(λk−ω2)
2
+σ2

0ω
2
|̄̃ξk1|

2
.

Πk
0 (iω) =

( −σ0ω2

(λk−ω2)
2
+σ2

0ω
2

0

0 0

)

Frequency-domain condition: Πk
0 (iω) ≤ 0, ∀ω ∈ R if σ0 > 0 .
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Counterexample: blow-up if ϕ2 (y) = θ3

θt − θxx = θ3 on (0,1) with Dirichlet BC.

Fig. 9

2) F 2 (y, ξ) =
∫ 1

0

(

θ2 − aθξ2
)

dx =
∫ 1

0

(

θ2 − aθσ (θ)w2
t

)

dx

Additional assumption :
∫ 1

0

(

θ2 − aθσ (θ)w2
t

)

dx > 0

F = F 1+ F 2

Πk
0 (iω) =

( −σ0ω2

(λk−ω2)
2
+σ2

0ω
2

0 ,

0 1−aλk

ω2+λ2
k

)

a :=
2

λ1
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Frequency-domain condition: Πk
0 (iω) ≤ 0, ∀ω ∈ R.

Theorem 7: Absolute stability with respect to the outputs w, wt, θ.

Experimental results

1)σ (θ) =
{

exp (8− θ) , θ > 4;
exp (θ) , θ ≤ 4

θ0 (x) = 9 (1− |2x − 1|)

a) w0 (x) = 5 (1− |2x − 1|) , w1 (x) = 0

θ w
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b) The same σ and θ0,

w0 (x) = 0, w1 (x) = 5 (1− |2x − 1|)
θ w
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Fig. 10
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2) σ (θ) =

{

θ − 3, θ > 4;
5− θ, θ ≤ 4

θ0 (x) = 9 (1− |2x − 1|)

w0 (x) = 5 (1− |2x − 1|)

w1 (x) = 0

θ w
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1
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11. Absolute stability in the microwave heating problem

Let us consider the following system:

wt = v, x ∈ (0,1), t > 0, (11)
vt = wxx − σ(θ)v, x ∈ (0,1), t > 0, (12)
k(θ)t = θxx + σ(θ)v2, x ∈ (0,1), t > 0, (13)
w(0, t) = 0, w(1, t) = 0, t > 0, (14)
θ(0, t) = θ(1, t) = 0, t > 0, (15)
w(x,0) = w0(x), v(x,0) = w1(x), x ∈ (0,1), (16)
θ(x,0) = θ0(x), x ∈ (0,1). (17)
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In equation (13), k(θ) is a function defining internal energy of the
material at the given temperature θ. With respect to Joule’s law
and heat capacity definition we have

k(θ)t =
∂k

∂θ
θt = c(θ)θt,

where c is the heat capacity of the material.

Thus, equation (13) takes the classic form of the heat transfer
equation

cθt = θxx + F.

Assumptions

(A9) 1) σ(z) is piecewise C1 on (0,∞), k(z) is a smooth
function on (0,∞).

2) There exist σ0, σ1: 0 < σ0 ≤ σ1, such that
σ0 ≤ σ(z) ≤ σ1, for z ≥ 0.

3) There exists k1 > 0, such that k1 ≤ k′(z), for z ≥ 0.
4) Either exists σ2, such that σ(z)z ≤ σ2, or k2,

such that k′(z)−1z ≤ k2, for z ≥ 0.

(A10) 1) θ0(x) is nonnegative and of class C2(0,1).
Compatibility conditions up to the second order hold
at the points (0,0) and (1,0).
2) w0(x) and w1(x) are of class C4(0,1).
Compatibility holds at (0,0) and (1,0).

(Yin): Under conditions (A9) – (A10), the system (11)-(17) has
a unique classical solution u = (w, v, θ) on QT = (0,1) ×
(0, T ), for T < ∞. Furthermore, w(x, t) ∈ C3,3(Q̄T), θ(x, t) ∈
C2+α,1+α

2(Q̄T) for some α ∈ (0,1).

Consider the family of mappings {ϕt(·)}t∈R+
, ϕ(·)(·) : R+ × X →

X of the form

ϕt(u0) = u(t, u0) ,
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where u(t, u0) = (w(t), v(t), θ(t)) is the solution of the system
(11)-(17) with initial conditions u0 = (w0, w1, θ0), and X is the
associated solution space.

Fig. 12

Proposition 1 Let ϕ be a continuous semigroup on a metric space
X. If the trajectory through x ∈ X, γ(x) := ∪t>0ϕt(x) is precom-
pact in X, then ϕt(x) → ω(x), t → ∞. Here ω(x) is the

ω-limit set of x, which is a compact subset of X. Moreover, ω(x)
is positively invariant with respect to ϕt.

Definition 9 A Lyapunov functional for ϕt is a mapping Φ : X →
R, such that Φ(ϕt(x)) ≤ Φ(x), for any x ∈ X, t ≥ 0.

Theorem 8 (Dafermos) Let the conditions of Proposition1 hold,
and let Φ be a Lyapunov functional for ϕ. Then Φ is constant on
ω(x).

12 Use of the invariance principle for the microwave heating
problem

Introduce the Banach space X = H1
0(0,1)×L2(0,1)×L2(0,1),

with the norm

‖(w, v, θ)‖2X = ‖w‖2H1
0
+ ‖v‖2L2 + ‖θ‖2L2.
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For any (w, v, θ) ∈ X we introduce the functional

Φ(w, v, θ) =

1
∫

0

(w2
x +2λwv + v2+ aθ2)dx, (18)

where λ and a are some positive constants.

(A11) There exist positive parameters λ and a such that for some
ε > 0

1) 0 < λ < 1;

2) 1
2
σ0ε − 1 < 0;

3) λ( 1
2ε

σ1+1)+ ak−1
1 σ2 − σ0 < 0 (σ0, σ1, σ2 and k1 from the

conditions (A9)).

Lemma 1 Under the conditions (A9) – (A11) the functional Φ of
the system (11)-(17) has the following properties:

1) There exist constants C1, C2 > 0, such that

C1(‖wx‖2L2 + ‖v‖2L2 + ‖θ‖2L2) ≤ Φ(w, v, θ) (19)
≤ C2(‖wx‖2L2 + ‖v‖2L2 + ‖θ‖2L2), (20)

for (w, v, θ) ∈ X.

2) There exists a constant C3 > 0, such that

d

dt
Φ(t) ≤ −C3Φ(t) ≤ 0, for all t ≥ t0, (21)

where Φ(t) = Φ(w(t), v(t), θ(t)) and (w(t), v(t), θ(t)) is some
solution of (11)-(17).

Idea of the proof: 1) This inequality follows from the estimate
‖w‖2L2 ≤ ‖wx‖2L2 for functions from H1

0(0,1).
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2) Direct computation shows that

d

dt
Φ(t) = 2

1
∫

0

(

− λw2
x − λσ(θ)wv + (λ − σ(θ)+

ak′(θ)−1σ(θ)θ)v2 − ak′(θ)−1θ2x

)

dx ≤

− C3

1
∫

0

(

‖wx‖2L2 + ‖v‖2L2 + ‖θ‖2L2

)

dx,

where C3 > 0 is a constant that exists due to (A11):

1) 1
2
σ0ε − 1 < 0;

2) λ( 1
2ε

σ1+1)+ ak−1
1 σ2 − σ0 < 0 or

λ( 1
2ε

σ1+1)+ aσ2σ1 − σ0 < 0.

Theorem 9 If the conditions of the Lemma hold, then any solution
of the system (11)-(17) tends in X to the zero solution as t → ∞.

Proof DefineΦ asΦ(t) = Φ(w(t), v(t), θ(t)), where (w(t), v(t), θ(t))
is some solution of (11)-(17).

Statement 2) of the lemma:

d

dt
Φ(t) ≤ −C3Φ(t), t ≥ t0. (22)

Continuity of the functional and Gronwall’s inequality:
lim
t→∞

Φ(t) = 0.
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13 Numerical experiments

Initial conditions: w0(x) = 0, w1(x) = p sin(πx) and θ0(x) =
p sin(πx) for solution components wp(x, t) and θp(x, t), where p
is taken from [−0.5,0.5].
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Fig. 13 Solution component θp(x, t).
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Fig. 14 Solution component wp(x, t).
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14 The two-phase problem

We consider a coefficient of the form

k(s) =

{

s+1, s > θc

s, s ≤ θc
,

Fig. 15 Noncontinuous two-phase coefficient.
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