Electromagnetic wave propagation in complex materials with thermo-electric coupling

I. Ermakov, Yu. Kalinin, N. Yumaguzin and V.Reitmann

Saint-Petersburg State University Department of Mathematics and Mechanics, Russia

In cooperation with: Freie Universität Berlin (Prof. Dr. B. Fiedler) Technische Universität Dresden (Prof. Dr. R. Picard) MPI-PKS Dresden (Prof. Dr. H. Kantz)

First Interdisciplinary Workshop,

of the German-Russian Interdisciplinary Science Center (G-RISC)

Structure and Dynamics of Matter

October 18 — 20, 2010, Berlin, Germany

1. Coupled system of Maxwell's equations and heat equation

Let $\Omega \subset \mathbb{R}^3, \partial \Omega$ the smooth enough boundary,

Fig. 1

$$\varepsilon E_t + \sigma E = \operatorname{rot} H,$$

$$\mu H_t + \operatorname{rot} E = 0,$$

$$\theta_t - \Delta \theta = \sigma |E|^2,$$
(1)

where E(x,t) is the electric field, H(x,t) is the magnetic field, $\theta(x,t)$ is the temperature, $\sigma(\theta)$ is the electrical conductivity, $\varepsilon(x)$ is the electric permittivity, $\mu(x)$ is the magnetic permeability, $(x,t) \in Q_T := \Omega \times [0,T)$.

$$E(x,t) = (E_1(x,t), E_2(x,t), E_3(x,t), x = (x_1, x_2, x_3),$$

$$\mathsf{rotE} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ E_1 & E_2 & E_3 \end{vmatrix} = \nabla \times \mathsf{E}$$

 $q = \sigma |E|^2$ is Joule's heat

Fig. 2

Initial and boundary conditions (Landau/Lifshetz, Electrodynamics):

 $\nu \times E(x,t) = \nu \times G(x,t)$, where ν is the normal to the boundary $\partial \Omega$, G(x,t) is some function.

$$eta_{
u} =
u \cdot
abla heta = 0, \, (x,t) \in S_T := \partial \Omega \times [0,T],$$

 $E(x,0) = E_0(x), H(x,0) = H_0(x), heta(x,0) = heta_0(x), x \in \Omega,$

 $E_0(x), H_0(x)$, and $\theta_0(x)$ are some functions.

2. The one-dimensional case

Suppose that $Q_T = \{(x,t) | 0 < x < 1, 0 < t < T\}$ and E(x,t) = (0, e(x,t), 0), H(x,t) = (0, 0, h(x,t)).

Fig. 3

Rewrite the previous system in the form

$$\begin{aligned} \varepsilon e_t + \sigma e &= -e_2 h_x, \\ \mu h_t + e_x &= 0, \\ \theta_t - \theta_{xx} &= \sigma |e|^2, \quad x \in (0, 1), t > 0, \\ e(0, t) &= f(t), \theta(0, t) = 0, \quad t > 0, \\ e(x, 0) &= e_0(x), h(x, 0) = h_0(x), \quad x \in (0, 1), \\ \theta(x, 0) &= \theta_0(x). \end{aligned}$$

$$(2)$$

We assume that $w(x,t) := \int_{0}^{t} e(x,s)ds$ and $\varepsilon(x) = \mu(x) = 1$ and derive the following system:

$$\begin{cases} w_{tt} = w_{xx} - \sigma(\theta)w_t, \\ \theta_t - \theta_{xx} = \sigma(\theta)w_t^2, \\ w(0,t) = f_1(t), w(1,t) = f_2(t), \\ \theta(0,t) = \theta(1,t) = 0, \\ w(x,0) = w_0(x), w_t(x,0) = w_1(x), \\ \theta(x,0) = \theta_0(x). \end{cases}$$
(3)

Fig. 4

Assumptions

- (A1) 1) $\sigma(z)$ is piecewise C^1 on $(0, \infty)$.
 - 2) There exist constants $0 < \sigma_0 \leq \sigma_1$, such that $\sigma_0 \leq \sigma(z) \leq \sigma_1$, for any $z \geq 0$.
 - 3) There exists a constant σ_2 , such that $\sigma(z)z \leq \sigma_2$, for any $z \geq 0$.
- (A2) 1) $\theta_0(x)$ is nonnegative and of class $C^2(0, 1)$.
 - 2) $w_0(x), w_1(x)$ are of class $C^4(0, 1)$ and $f_1(t), f_2(t)$ are of class C^2 .

Remark 1

Hölder spaces (Ladyzhenskaya, Solonnikov, Ural'ceva, 1968) Suppose Ω is a bounded region in \mathbb{R}^n .

$$C^{\alpha}\left(\bar{\Omega}\right) = \left\{ f \in C_{b}\left(\bar{\Omega}\right) : \sup_{t,s\in\bar{\Omega},t\neq s} \frac{|f\left(t\right) - f\left(s\right)|}{|t-s|^{\alpha}} < +\infty \right\}$$

$$C^{\alpha,0}\left(\bar{\Omega}\times[a,b]\right) = \left\{ f \in C\left(\bar{\Omega}\times[a,b]\right) : f\left(\cdot,t\right)\in C^{\alpha}\left(\bar{\Omega}\right)\forall t\in[a,b] \right\}$$

$$C^{0,\alpha}\left(\bar{\Omega}\times[a,b]\right) = \left\{ f \in C\left(\bar{\Omega}\times[a,b]\right) : f\left(x,\cdot\right)\in C^{\alpha}\left[a,b\right]\forall x\in\bar{\Omega} \right\}$$

$$C^{\alpha,\frac{\alpha}{2}}\left(\bar{\Omega}\times[a,b]\right) = C^{0,\frac{\alpha}{2}}\left(\bar{\Omega}\times[a,b]\right) \cap C^{\alpha,0}\left(\bar{\Omega}\times[a,b]\right)$$

$$C^{2+\alpha,1+\frac{\alpha}{2}}\left(\bar{\Omega}\times[a,b]\right) = \left\{ f \in C^{2,1}\left(\bar{\Omega}\times[a,b]\right) : f_{t},f_{x_{i}x_{j}}\in C^{\alpha,\frac{\alpha}{2}}\left(\bar{\Omega}\times[a,b]\right) \right\}.$$

Under the assumptions (A1)-(A2), the system has a classical unique global solution(Yin) (w, w_t, θ) on $Q_T = (0, 1) \times (0, T)$, for any $T < \infty$. Furthermore, $w(x, t) \in C^{3,3}(\bar{Q}_T), \theta(x, t) \in C^{2+\alpha, 1+\frac{\alpha}{2}}(\bar{Q}_T)$ for some $\alpha \in (0, 1)$.

3. Almost periodic perturbations

Let $f_1(t)$ and $f_2(t)$ be are almost periodic functions.

Definition 1 A scalar continuous function $f : \mathbb{R} \to \mathbb{R}$, is called *almost-periodic in the sense of Bohr*, if for every $\varepsilon > 0$ there exists an $L = L(\varepsilon)$ such that every interval $[t_0, t_0 + L]$ contains at least one number α for which $|f(t + \alpha) - f(t)| < \varepsilon, t \in \mathbb{R}$.

Example 1

- a) periodic functions: $\cos t$, $\sin t$ etc.
- b) $a_1 \cos \omega_1 t + a_2 \cos \omega_2 t, \omega_1/\omega_2$ irrational, $a_1 \neq 0, a_2 \neq 0$

4. Cocycles in infinite-dimensional phase space

Definition 2 Let (P, ρ) be a complete metric space, $\{\tau^t\}_{t \in \mathbb{R}} : P \to P$ is a continuous map satisfying

1)
$$\tau^{0}(\cdot) = id_{P}$$
,

2) $\tau^{t+s}(\cdot) = \tau^t \circ \tau^s, \forall t, s \in \mathbb{R}.$

Then $(\{\tau^t\}_{t\in\mathbb{R}}, P)$ is called *base flow.*

Example 2

Shift map $\tau^t(p) := p + t, \ \forall t, p \in \mathbb{R} = P$

Definition 3 Let *X* be a complete metric space. A *cocycle over the base flow* $\{\tau^t\}_{t\in\mathbb{R}}$ is a family of maps $\{\varphi^t(p,\cdot): X \to X\}_{t\in\mathbb{R}, p\in P}$ such that

1)
$$\varphi^0(p,\cdot) = id_X, \forall p \in P,$$

2)
$$\varphi^{t+s}(p,\cdot) = \varphi^t(\tau^s(p),\varphi^s(p,\cdot)), \forall t,s \in \mathbb{R}, \forall p \in P.$$

5. Constructing a cocycle for the microwave heating problem

Introduce the auxiliary functions $f(x,t) = f_1(t)(x-1) + f_2(t)x$, $x \in (0,1), t \ge 0, W(x,t) = w(x,t) - f(x,t), V(x,t) =$ $W_t(x,t) - f_t(x,t)$. Rewrite equation (3) as the first order system

$$\begin{cases} W_t = V - f_t, \\ V_t = W_{xx} - \sigma(\theta)V + f_{tt}, \\ \theta_t - \theta_{xx} = \sigma(\theta)V^2, \\ W(0,t) = W(1,t) = 0, \theta(0,t) = \theta(1,t) = 0, \\ W(x,0) = w_0(x) - f(x,0), \\ W_t(x,0) = w_1(x) - f_t(x,0), \\ \theta(x,0) = \theta_0(x). \end{cases}$$
(4)

Then (4) can be formally written as system

$$\frac{du}{dt} = Au + Bg(V,\theta) + F(t), \tag{5}$$

where $u = (W, V, \theta)$, $F(t) = (-f_t, f_{tt}, 0)$, A, B are linear operators.

If $(W(x,t), V(x,t), \theta(x,t))$ is a solution of (4), we can write it as

$$u(t, t_0, u_0) = (W(\cdot, t), V(\cdot, t), \theta(\cdot, t)),$$

$$u_0 = (w_0(x) - f(x, 0), w_1(x) - f_t(x, 0), \theta_0(x)),$$

Consider the shift map $\tau^t : \mathbb{R}_+ \to \mathbb{R}_+$ and the family of mappings $\{\varphi^t(t_0, \cdot)\}_{t, t_0 \in \mathbb{R}_+}$ such that

$$\varphi^{(\cdot)}(\cdot, \cdot) : \mathbb{R}_+ \times \mathbb{R}_+ \times X \to X,$$

$$\tau^t(t_0) = t + t_0,$$

$$\varphi^t(t_0, u_0) = u(t + t_0, t_0, u_0),$$

for any $t \in \mathbb{R}_+, t_0 \in \mathbb{R}_+, u_0 \in X$, where X is the Banach space $X = H_0^1(0, 1) \times L^2(0, 1) \times L^2(0, 1)$ with the norm $\| (W, V, \theta) \|_X^2 = \| W \|_{H_0^1}^2 + \| V \|_{L^2}^2 + \| \theta \|_{L^2}^2$.

6. Existence of an almost periodic solution

Definition 4 A continuous function $y : \mathbb{R}_+ \to X$ is called an *integral* of the cocycle on \mathbb{R}_+ , if $\varphi^t(s, y(s)) = y(t + s)$ for all $t, s \in \mathbb{R}_+$.

The integral $y : \mathbb{R}_+ \to X$ of the cocycle is said to be

1) *uniformly stable* if for any $\varepsilon > 0$, there exist $\delta = \delta(\varepsilon) > 0$ such that

$$\varphi^t(s, N_{\delta}(y(s))) \subset N_{\varepsilon}(y(t+s)), \ t, s \in \mathbb{R}_+,$$

2) *uniformly asymptotically stable* (UAS) if it is uniformly stable and there exist a $\delta_0 > 0$ with the property that for any $\varepsilon > 0$, there is a $t_0 > 0$ such that

$$\varphi^t(s, N_{\delta_0}(y(s))) \subset N_{\varepsilon}(y(t+s)), \ t \ge t_0, s \in \mathbb{R}_+.$$

Theorem 1 System (2) has an almost periodic solution which is uniformly asymptotically stable.

Idea of the proof: We consider the functional

$$\Phi(W, V, \theta) = \int_{0}^{1} (W_x^2 + 2\lambda WV + V^2 + a\theta^2) dx,$$

where $\lambda > 0$ and a > 0 are some parameters and show that each solution of (4) is bounded in future, uniformly asymptotically stable and has a compact orbit.

Consider the system (4) with initial-boundary conditions

$$W(x,0) = p \sin(\pi x),$$

$$V(x,0) = 0, \theta(x,0) = 0,$$

$$W(0,t) = \sin(t) + \sin(\sqrt{2}t), W(1,t) = 0,$$

$$\theta(0,t) = \theta(1,t) = 0.$$

Fig. 6

Reference

[1] Yu. Kalinin, V. Reitmann and N. Yumaguzin, Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect, submitted for publication in AIMS Journals.

7. Existence of the global attractor for the 1-dimensional microwave heating problem

We consider the system

$$w_{tt} - w_{xx} + \sigma(\theta) w_t = 0, \quad 0 < x < 1, \quad t > 0 \theta_t - \theta_{xx} = \sigma(\theta) w_t^2, \qquad 0 < x < 1, \quad t > 0$$
(6)

with boundary conditions (defining the set \equiv)

$$w(0,t) = w(1,t) = 0, \quad t > 0 \theta(0,t) = \theta(1,t) = 0, \quad t > 0$$
(7)

and initial conditions

$$w(x,0) = w_0(x), w_t(x,0) = w_1(x), \theta(x,0) = \theta_0(x), \quad (8)$$

 $x \in (0,1)$

We make the following assumptions:

(A3)
$$w_0 \in C^3[0,1], w_1 \in C^3[0,1], \theta_0 \in C^{2+\alpha}[0,1]$$

(A4) Compatibility conditions (defining the set
$$\Lambda$$
)
 $\theta_0(0) = \theta_0(1) = 0, w_0(0) = w_0(1) = 0,$
 $w_1(0) = w_1(1) = 0$
 $\theta_0''(0) = \theta_0''(1) = 0, w_0''(0) = w_0''(1) = 0$

(A5) σ is piecewise C^1 on $[0, +\infty)$ and there exists M > 0 and $k \ge 0$ such that $0 \le \sigma(z) \le M(1+z)^k, \forall z \ge 0$

Theorem 2 (Yin, 2001) Under the assumptions (A3) – (A5) the system (6) - (8) has a unique global solution (w, θ) with $\theta \in C^{2+\alpha,1+\frac{\alpha}{2}}(\bar{Q_T}), w \in C^{3,3}(\bar{Q_T})$ for any T > 0, where $Q_T = (0,1) \times (0,T]$.

Idea of the proof: Define the phase space

$$X = (C^{3}[0,1] \times C^{2}[0,1] \times C^{2+\alpha}[0,1]) \cap \Lambda \cap \Xi$$

The norm is induced from $H_0^1 \times L^2 \times H_0^1$

 $\|(w, v, \theta)\|_X^2 = \|w_x\|_{L^2}^2 + \|v\|_{L^2}^2 + \|\theta_x\|_{L^2}^2, \text{ where}$ $\|u\|_{L^2} = (\int_0^1 u^2 dx)^{1/2}.$

Define the map $\varphi^t : X \to X$:

$$\varphi^t u_0 = u(t) = u(t, u_0),$$

where $u(t) = (w(t), v(t), \theta(t))$ is the solution with initial data $u_0 = (w_0, w_1, \theta_0)$

 $\sigma : \mathbb{R}_+ \to \mathbb{R}$ is called *Lipschitz* if $\exists L > 0 \ \forall x, y \in \mathbb{R}_+$: $|\sigma(x) - \sigma(y)| \le L|x - y|$ 11

Theorem 3 Suppose additionally that σ is Lipschitz and $0 < \sigma_0 \leq \sigma(z) \leq \sigma_1, \forall z \geq 0$. Then the mapping $\varphi^t : X \to X$ is continuous for any $t \geq 0$.

Proof $u = (w(t), v(t), \theta(t))$, $\overline{u} = (\overline{w}(t), \overline{v}(t), \overline{\theta}(t))$ are solutions with initial data $u_0 = (w_0, v_0, \theta_0)$, $\overline{u}_0 = (\overline{w}_0, \overline{v}_0, \overline{\theta}_0)$.

$$\begin{split} \tilde{w} &:= w - \bar{w} \\ \tilde{\theta} &:= \theta - \bar{\theta} \\ \tilde{w}_{tt} - \tilde{w}_{xx} + \left(\sigma\left(\theta\right)v - \sigma\left(\bar{\theta}\right)\bar{v}\right) = 0 \ \left(\cdot, \tilde{w}_{t}\right) \\ \tilde{\theta}_{t} - \tilde{\theta}_{xx} &= \sigma\left(\theta\right)v^{2} - \sigma\left(\bar{\theta}\right)\bar{v}^{2} \ \left(\cdot, \tilde{\theta}_{t}\right) \\ 1)\frac{1}{2}\frac{d}{dt}\left(\|\tilde{w}_{x}\|^{2} + \|\tilde{w}_{t}\|^{2}\right) \leq C\left(\left\|\tilde{\theta}\right\|^{2} + \|\tilde{w}_{t}\|^{2}\right) \\ 2)\frac{1}{2}\frac{d}{dt}\|\tilde{\theta}_{x}\|^{2} + \|\tilde{\theta}_{t}\|^{2} \leq C\|\tilde{\theta}\|^{2} + C\|\tilde{w}_{t}\|^{2} \\ \frac{d}{dt}\Phi\left(t\right) \leq C\Phi\left(t\right), \text{ and } \Phi\left(t\right) = \|\tilde{w}_{x}\|^{2} + \|\tilde{w}_{t}\|^{2} + \|\tilde{\theta}_{x}\|^{2} \\ \Phi\left(t\right) \leq \Phi\left(0\right)e^{ct} \end{split}$$

C denotes different constants that may depend on $T, \|u_0\|, \|\overline{u}_0\|$

Theorem 4 The initial-boundary problem (6) - (8) defines a dynamical system on X.

8. Absorbing set

Definition 5 The set $A \subset X$ is called a *global attractor (B-attractor)* for the dynamical system $(\{\varphi^t\}, X)$ if it is compact, invariant and attracts all points (bounded sets) of the space X.

Definition 6 The set $Z \subset X$ is called *absorbing* for the dynamical system $(\{\varphi^t\}, X)$ if for any bounded that $M \subset X$ there exists a $t_0 = t_0(M)$ such that $\varphi^t M \subset Z, \forall t \ge 0$.

Fig. 7

Idea of the proof: Find a smooth functional Φ on X such that

$$\frac{d}{dt}\Phi\left(\varphi^{t}u\right) + c_{1}\Phi\left(\varphi^{t}u\right) \le D_{1}, \forall t > 0$$
$$\Phi\left(u\right) \ge c_{2}||u||^{2} - D_{2}, \forall u \in X$$
$$u, c_{2}, D_{1}, D_{2} > 0.$$

where $c_1, c_2, D_1,$

Additional assumptions

(A6)
$$\sigma(\theta) \theta \leq \sigma_2$$
 for $\theta < R$
(A7) $\exists \sigma_0, \sigma_1 0 < \sigma_0 \leq \sigma(\theta) \leq \sigma_1$
(A8) There exist $0 < \lambda < 1$ and $a > 0$ such that

$$4\lambda\sigma_0 - 4\lambda^2 - 2\lambda a\sigma_2 - \lambda^2\sigma_1^2 > 0$$

 $||u||_{L^{\infty}} = \operatorname{ess\,sup}\{|u(x)| : x \in (0,1)\}$

Theorem 5 The solution components of (6) – (8) w_x and w_t decay to zero exponentially in $L^2(0,1)$, θ decays to zero in $L^{\infty}(0,1)$ with rate $Ct^{-\frac{1}{2}}$ and exponentially in $L^2(0,1)$, when $\|\theta\|_{L^{\infty}} < R$.

$$||u(t)||_{L^2} \le C_1 e^{-C_2 t} ||u(0)||, \forall t \ge 0$$

Corollary 1 Each neighborhood of zero is an absorbing set for (6) -(8).

Idea of the proof:

Consider the functional on X

$$\Phi(w,v,\theta) = \int_0^1 \left(w_x^2 + 2\lambda wv + v^2 + a\theta^2 \right) dx$$

Differentiating Φ with respect to the system we obtain (using the Poincare inequality and integration by parts):

$$\frac{d}{dt}\Phi(t) = \int_0^1 \left(-\lambda w_x^2 - \lambda\sigma(\theta) wv + (\lambda - \sigma(\theta) + a\sigma(\theta)\theta)v^2 - a\theta_x^2\right) dx \le -C_3\Phi$$

Theorem 6 Let the assumptions 1), 2) be satisfied for $\|\theta\|_{L_2} > M$. Then the ball { $(w, v, \theta : \Phi(w, v, \theta) < M$ } is an absorbing set for the system (6) – (8). If additionally we have $\|\theta\|_{L_{\infty}} < R$, the attraction rate is exponential.

9. Use of the frequency domain method

A similar system was considered by Likhtarnikov and Yakubovich (1977):

$$w_{tt} + 2\varepsilon w_t - \Delta w + \alpha w = f(\theta) ,$$

$$\theta_t - \beta \Delta \theta + w - \gamma g(\theta) = 0 ,$$

$$w(x, 0) = w_0(x) , w_t(x, 0) = w_1(x) , \theta(x, 0) = \theta_0(x) .$$

Nonlinearities f and g satisfy the following conditions:

$$\theta g(\theta) - f^{2}(\theta) \ge 0, \exists G : G(\theta) \ge 0 : G'(\theta) = g(\theta)$$

Consider the equation

$$\dot{y} = Ay + B\xi, w = Cy.$$
 (9)

We introduce the spaces:

 Y_0 is a Hilbert space

 $Y_1 = D(A)$ is a Hilbert space dense in Y_0 , A is a linear self-adjoint operator,

 Y_{-1} is anti-dual to Y_1 (Y_{-1} is the closure of Y_0 with respect to the scalar product $(\eta, \varrho)_{-1} = (A^{-1}\eta, A^{-1}\varrho)_0$),

 $Y_1 \subset Y_0 \subset Y_{-1}$ is a Hilbert space rigging structure,

 \equiv and W are Hilbert spaces,

B, C are linear operators $\Xi \to Y_{-1}, Y_0 \to W$,

 $F^{j}(y,\xi)$ are Hermitian forms on $Y_1 \times \Xi$, $j = 1, \ldots, m$,

$$F^{j}(y,\xi) = (F_{1}^{j}y,y)_{-1,1} + 2\operatorname{Re}(F_{2}^{j}y,\xi)_{\Xi} + (F_{3}^{j}\xi,\xi)_{\Xi},$$

"Control": $\xi = \varphi(y)$

Consider the set $N = \bigcap_{1}^{m} N_{j}$ of processes $(y(\cdot), \xi(\cdot))$, satisfying the constraints

 $F^{j}\left(y\left(t
ight),\xi\left(t
ight)
ight)\geq0$

(local constraint) or

$$\int_{0}^{t_{k}}F^{j}\left(y\left(t\right),\xi\left(t\right)\right)dt\geq\gamma_{j}$$

(integral constraint)

Fig. 8

$$(\Pi_0(i\omega)\xi,\xi) = \sum_{j=1}^m \tau_j F^j(\chi(i\omega)\xi,\xi) + \delta C\chi(i\omega) \|\xi\|^2,$$

where $\chi(i\omega) = (i\omega I - A)^{-1}B$ is the frequency characteristic of the system (9).

Definition 7 The system (9) is called *absolutely W*-*dichotomic* if for any process $p \in (L + p_0) \cap N$, the state of which is bounded $||x(t)||_0 \leq C_0 \quad \forall t \geq 0$, we have

$$w(\cdot) \in L^{2}(0, +\infty; W), \|w(\cdot)\|_{2,W}^{2} \leq C\left(\|x_{0}\|_{0}^{2} + \sum \gamma_{i}\right).$$
(10)

Definition 8 The system (9) is called *absolutely W*-stable, if for any process $p \in (L + p_0) \cap N$ we have (10).

Theorem 7 (The quadratic criterium of absolute stability of Likhtarnikov and Yakubovich)

Let the following conditions hold:

1) The pair (A, B) is L^2 -controllable;

15

- 2) A has no spectral points in some neighborhood of the imaginary axis ;
- 3) The system (9) is minimally stable in the class N.

Then the system (9) is absolutely stable if and only if the frequency domain-condition is satisfied:

 $\begin{aligned} \exists \delta > 0 \quad \forall \omega \in \mathbb{R} \ \forall \xi \in \Xi : \\ F\left(\chi\left(i\omega\right)\xi,\xi\right) \leq -\delta \|\xi\|^2. \end{aligned}$

10. Application of the frequency-domain method

Define the system

$$\dot{y} = Ay + B\xi,$$

$$y(x,t) = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} w_t(x,t) \\ w(x,t) \\ \theta(x,t) \end{pmatrix},$$

$$A = \begin{pmatrix} -\sigma_0 I & -A_0 & 0 \\ I & 0 & 0 \\ 0 & 0 & -A_0 \end{pmatrix}, B = \begin{pmatrix} I & 0 \\ 0 & 0 \\ 0 & I \end{pmatrix}$$

 A_0 is the operator defined by $-\Delta$ with homogeneous boundary conditions.

Notations:

$$\sigma(\theta) = \sigma_0 + \hat{\sigma}(\theta), \sigma_0 > 0$$

$$\xi(x, t) = \varphi(y) = \begin{pmatrix} -\sigma(\hat{\theta})w_t(x, t) \\ (\sigma_0 + \hat{\sigma}(\theta))w_t^2(x, t) \end{pmatrix}$$

 $\{\lambda_k\}_{k=1}^{\infty}$ are the eigenvalues of A_0 , $0 < \lambda_1 \le \lambda_2 \le \dots \lambda_k \to +\infty$, $\{e_k\}_{k=1}^{\infty}$ are the eigenfunctions which define an orthonormized basis in L^2 .

 $w^{k}(t), \theta^{k}(t), \xi^{k}(t)$ are the Fourier coefficients of functions w(x, t), $\theta(x, t), \xi(x, t)$, respectively with respect to $\{e_k\}$.

$$ilde{u}(i\omega) = \int_0^\infty e^{-i\omega t} u(t) {
m d} t$$

Decompose solution components by the basis and take the Fourier transform in t (k = 1, 2, ...):

$$-\omega^2 \tilde{w}^k(i\omega) + i\omega \sigma_0 \tilde{w}^k(i\omega) - \lambda_k \tilde{w}^k(i\omega) = \tilde{\xi}_1^k(i\omega) ,$$

$$i\omega \tilde{\theta}^k(i\omega) + \lambda_k \tilde{\theta}^k(i\omega) = \tilde{\xi}_2^k(i\omega) .$$

From here we obtain:

$$\tilde{w}^{k}(i\omega) = \tilde{\xi}_{1}^{k}(i\omega)\chi_{0}(i\omega,\lambda_{k}), \tilde{\theta}^{k}(i\omega) = \tilde{\xi}_{2}^{k}(i\omega)\chi_{1}(i\omega,\lambda_{k}),$$

where

$$\chi_0(i\omega,\lambda_k) = \left(-\omega^2 + \sigma_0 i\omega + \lambda_k\right)^{-1}, \chi_1(i\omega,\lambda_k) = (i\omega + \lambda_k)^{-1},$$

$$\left(\Pi_{0}\left(i\omega\right)\tilde{\xi},\tilde{\xi}\right)=\sum_{k}\left(\Pi_{0}^{k}\left(i\omega\right)\tilde{\xi}^{k},\tilde{\xi}^{k}\right)\,.$$

Let us consider two quadratic constraints:

1)
$$F^{1}(y,\xi) = \int_{0}^{1} y_{1}\xi_{1}dx = \int_{0}^{1} w_{t}(x,t)\widehat{\sigma}(\theta)dx \ge 0$$
,
 $\left(\prod_{0}^{k}(i\omega)\,\tilde{\xi}^{k},\tilde{\xi}^{k}\right) = \operatorname{Re}\left(-\overline{\tilde{\xi}}_{1}^{\mathsf{k}}\widetilde{\mathsf{W}}_{\mathsf{t}}^{\mathsf{k}}\right) = \frac{-\sigma_{0}\omega^{2}}{(\lambda_{\mathsf{k}}-\omega^{2})^{2}+\sigma_{0}^{2}\omega^{2}}|\overline{\tilde{\xi}}_{1}^{\mathsf{k}}|^{2}.$

$$\Pi_{0}^{k}(i\omega) = \begin{pmatrix} \frac{-\sigma_{0}\omega^{2}}{(\lambda_{k}-\omega^{2})^{2}+\sigma_{0}^{2}\omega^{2}} & 0\\ 0 & 0 \end{pmatrix}$$

Frequency-domain condition: $\Pi_0^k(i\omega) \leq 0, \ \forall \omega \in \mathbb{R} \text{ if } \sigma_0 > 0.$

Counterexample: blow-up if $\varphi_2(y) = \theta^3$ $\theta_t - \theta_{xx} = \theta^3$ on (0, 1) with Dirichlet BC.

Fig. 9

2) $F^2(y,\xi) = \int_0^1 (\theta^2 - a\theta\xi_2) dx = \int_0^1 (\theta^2 - a\theta\sigma(\theta) w_t^2) dx$ Additional assumption :

$$\int_{0}^{1} \left(\theta^{2} - a\theta\sigma\left(\theta\right)w_{t}^{2}\right)dx > 0$$

$$F = F^{1} + F^{2}$$

$$\Pi_{0}^{k}\left(i\omega\right) = \begin{pmatrix} \frac{-\sigma_{0}\omega^{2}}{\left(\lambda_{k} - \omega^{2}\right)^{2} + \sigma_{0}^{2}\omega^{2}} & 0, \\ 0 & \frac{1 - a\lambda_{k}}{\omega^{2} + \lambda_{k}^{2}} \end{pmatrix}$$

$$a := \frac{2}{\lambda_{1}}$$

Frequency-domain condition: $\Pi_0^k(i\omega) \leq 0, \ \forall \omega \in \mathbb{R}.$

Theorem 7: Absolute stability with respect to the outputs w, w_t, θ .

Experimental results

1)
$$\sigma(\theta) = \begin{cases} \exp(8-\theta), \theta > 4; \\ \exp(\theta), \theta \le 4 \end{cases}$$

 $\theta_0(x) = 9(1 - |2x - 1|)$
a) $w_0(x) = 5(1 - |2x - 1|), w_1(x) = 0$

b) The same σ and θ_0 ,

 $w_0(x) = 0, w_1(x) = 5(1 - |2x - 1|)$

Fig. 10

2)
$$\sigma(\theta) = \begin{cases} \theta - 3, \theta > 4; \\ 5 - \theta, \theta \le 4 \end{cases}$$

 $\theta_0(x) = 9(1 - |2x - 1|)$
 $w_0(x) = 5(1 - |2x - 1|)$
 $w_1(x) = 0$

Fig. 11

11. Absolute stability in the microwave heating problem

Let us consider the following system:

$$\begin{split} w_t &= v, & x \in (0,1), \ t > 0, \ (11) \\ v_t &= w_{xx} - \sigma(\theta)v, & x \in (0,1), \ t > 0, \ (12) \\ k(\theta)_t &= \theta_{xx} + \sigma(\theta)v^2, & x \in (0,1), \ t > 0, \ (13) \\ w(0,t) &= 0, \ w(1,t) = 0, & t > 0, \ (14) \\ \theta(0,t) &= \theta(1,t) = 0, & t > 0, \ (15) \\ w(x,0) &= w_0(x), \ v(x,0) = w_1(x), & x \in (0,1), \ (16) \\ \theta(x,0) &= \theta_0(x), & x \in (0,1). \ (17) \end{split}$$

In equation (13), $k(\theta)$ is a function defining internal energy of the material at the given temperature θ . With respect to Joule's law and heat capacity definition we have

$$k(\theta)_t = \frac{\partial k}{\partial \theta} \theta_t = c(\theta) \theta_t,$$

where c is the heat capacity of the material.

Thus, equation (13) takes the classic form of the heat transfer equation

$$c\theta_t = \theta_{xx} + F.$$

Assumptions

- (A9) 1) $\sigma(z)$ is piecewise C^1 on $(0, \infty)$, k(z) is a smooth function on $(0, \infty)$.
 - 2) There exist σ_0 , σ_1 : $0 < \sigma_0 \le \sigma_1$, such that $\sigma_0 \le \sigma(z) \le \sigma_1$, for $z \ge 0$.
 - 3) There exists $k_1 > 0$, such that $k_1 \le k'(z)$, for $z \ge 0$.
 - 4) Either exists σ_2 , such that $\sigma(z)z \leq \sigma_2$, or k_2 , such that $k'(z)^{-1}z \leq k_2$, for $z \geq 0$.
- (A10) 1) θ₀(x) is nonnegative and of class C²(0,1). Compatibility conditions up to the second order hold at the points (0,0) and (1,0).
 2) w₀(x) and w₁(x) are of class C⁴(0,1). Compatibility holds at (0,0) and (1,0).

(Yin): Under conditions (A9) – (A10), the system (11)-(17) has a unique classical solution $u = (w, v, \theta)$ on $Q_T = (0, 1) \times$ (0, T), for $T < \infty$. Furthermore, $w(x, t) \in C^{3,3}(\bar{Q}_T), \ \theta(x, t) \in C^{2+\alpha, 1+\frac{\alpha}{2}}(\bar{Q}_T)$ for some $\alpha \in (0, 1)$.

Consider the family of mappings $\{\varphi^t(\cdot)\}_{t\in\mathbb{R}_+}, \varphi^{(\cdot)}(\cdot) : \mathbb{R}_+ \times X \to X$ of the form

$$\varphi^t(u_0) = u(t, u_0) \,,$$

where $u(t, u_0) = (w(t), v(t), \theta(t))$ is the solution of the system (11)-(17) with initial conditions $u_0 = (w_0, w_1, \theta_0)$, and X is the associated solution space.

Fig. 12

Proposition 1 Let φ be a continuous semigroup on a metric space X. If the trajectory through $x \in X$, $\gamma(x) := \bigcup_{t>0} \varphi^t(x)$ is precompact in X, then $\varphi^t(x) \to \omega(x)$, $t \to \infty$. Here $\omega(x)$ is the

 ω -limit set of x, which is a compact subset of X. Moreover, $\omega(x)$ is positively invariant with respect to φ^t .

Definition 9 A *Lyapunov functional* for φ^t is a mapping $\Phi : X \to \mathbb{R}$, such that $\Phi(\varphi^t(x)) \leq \Phi(x)$, for any $x \in X, t \geq 0$.

Theorem 8 (Dafermos) Let the conditions of Proposition1 hold, and let Φ be a Lyapunov functional for φ . Then Φ is constant on $\omega(x)$.

12 Use of the invariance principle for the microwave heating problem

Introduce the Banach space $X = H_0^1(0, 1) \times L^2(0, 1) \times L^2(0, 1)$, with the norm

$$\|(w,v,\theta)\|_X^2 = \|w\|_{H^1_0}^2 + \|v\|_{L^2}^2 + \|\theta\|_{L^2}^2.$$

For any $(w, v, \theta) \in X$ we introduce the functional

$$\Phi(w, v, \theta) = \int_{0}^{1} (w_x^2 + 2\lambda wv + v^2 + a\theta^2) dx, \qquad (18)$$

where λ and a are some positive constants.

(A11) There exist positive parameters λ and a such that for some $\epsilon > 0$

- 1) $0 < \lambda < 1;$
- 2) $\frac{1}{2}\sigma_0\epsilon 1 < 0;$
- 3) $\lambda(\frac{1}{2\epsilon}\sigma_1+1) + ak_1^{-1}\sigma_2 \sigma_0 < 0 \ (\sigma_0, \sigma_1, \sigma_2 \text{ and } k_1 \text{ from the conditions (A9)}).$

Lemma 1 Under the conditions (A9) – (A11) the functional Φ of the system (11)-(17) has the following properties:

1) There exist constants $C_1, C_2 > 0$, such that

$$C_1(\|w_x\|_{L^2}^2 + \|v\|_{L^2}^2 + \|\theta\|_{L^2}^2) \le \Phi(w, v, \theta)$$
(19)

$$\leq C_2(\|w_x\|_{L^2}^2 + \|v\|_{L^2}^2 + \|\theta\|_{L^2}^2), \qquad (20)$$

for $(w, v, \theta) \in X$.

2) There exists a constant $C_3 > 0$, such that

$$\frac{d}{dt}\Phi(t) \le -C_3\Phi(t) \le 0, \quad \text{for all } t \ge t_0, \tag{21}$$

where $\Phi(t) = \Phi(w(t), v(t), \theta(t))$ and $(w(t), v(t), \theta(t))$ is some solution of (11)-(17).

Idea of the proof: 1) This inequality follows from the estimate $||w||_{L^2}^2 \leq ||w_x||_{L^2}^2$ for functions from $H_0^1(0, 1)$.

2) Direct computation shows that

$$\begin{aligned} \frac{d}{dt}\Phi(t) &= 2\int_{0}^{1} \left(-\lambda w_{x}^{2} - \lambda \sigma(\theta)wv + (\lambda - \sigma(\theta) + ak'(\theta)^{-1}\sigma(\theta)\theta)v^{2} - ak'(\theta)^{-1}\theta_{x}^{2}\right)dx \leq \\ &- C_{3}\int_{0}^{1} \left(\|w_{x}\|_{L^{2}}^{2} + \|v\|_{L^{2}}^{2} + \|\theta\|_{L^{2}}^{2}\right)dx, \end{aligned}$$

where $C_3 > 0$ is a constant that exists due to (A11):

1)
$$\frac{1}{2}\sigma_0\epsilon - 1 < 0;$$

2)
$$\lambda(\frac{1}{2\epsilon}\sigma_1 + 1) + ak_1^{-1}\sigma_2 - \sigma_0 < 0$$
 or $\lambda(\frac{1}{2\epsilon}\sigma_1 + 1) + a\sigma_2\sigma_1 - \sigma_0 < 0.$

Theorem 9 If the conditions of the Lemma hold, then any solution of the system (11)-(17) tends in X to the zero solution as $t \to \infty$.

Proof Define Φ as $\Phi(t) = \Phi(w(t), v(t), \theta(t))$, where $(w(t), v(t), \theta(t))$ is some solution of (11)-(17).

Statement 2) of the lemma:

$$\frac{d}{dt}\Phi(t) \le -C_3\Phi(t), \quad t \ge t_0.$$
(22)

Continuity of the functional and Gronwall's inequality: $\lim_{t\to\infty} \Phi(t) = 0.$

13 Numerical experiments

Initial conditions: $w_0(x) = 0$, $w_1(x) = p \sin(\pi x)$ and $\theta_0(x) = p \sin(\pi x)$ for solution components $w^p(x,t)$ and $\theta^p(x,t)$, where p is taken from [-0.5, 0.5].

Fig. 13 Solution component $\theta^p(x, t)$.

Fig. 14 Solution component $w^p(x, t)$.

25

14 The two-phase problem

We consider a coefficient of the form

Fig. 15 Noncontinuous two-phase coefficient.

References

[1] V. Reitmann and H. Kantz, *Frequency domain conditions for the existence of almost periodic solutions in evolutionary variational inequalities.* Stochastics and Dynamics, 4 (3), 483 – 499, 2004.

[2] V. Reitmann, *Convergence in evolutionary variational inequalities with hysteresis nonlinearities.* In: Proc. of Equadiff 11, Bratislava, Slovakia, 2005.

[3] V. Reitmann, *Realization theory methods for the stability investigation of nonlinear infinite-dimensional input-output systems.* In: Proc of Equadiff 12, Brno, Czech, 2009, Mathematica Bohemica, 2010.

[4] G.A. Leonov, and V. Reitmann, Absolute observation stability for evolutionary variational inequalities. World Scientific Publishing Co., Scientific Series on Nonlinear Science, Series B, Vol.14, 2010.