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1. Introduction

Suppose: Yy a real Hilbert space, (-,-)o and || - ||o the scalar pro-
duct resp. the norm on Yo,

A : D(A) — Y, the generator of a Cp-semigroup on

Yo, Y1 1= D(A)

For fixed 8 € p (A) NR for any y,n € Y1 define

(y,m1:= ((BI — Ay, (BI — A)n), - (1)

Y_, is the completion of Yy with respect to the norm,
lyll—1 :=[|(B] — A)~1y||o is the scalar product

(y,m)-1:= ((BI — A) "'y, BI—A)"'n),, VymneY.
(2)

Y1 C Yo C Y_1 is a continuous embedding, i.e., foraa = 1,0,
Yo CYa-1, [|Ylla—1 < cllylla, Vy € Ya.

(Y1, Yo,Y 1) is called a Gelfand triple.
Forany y € Yp and z € Y7 we have

Extend (-, z)o by continuity onto Y_1

1(y, 2)o| < |lyll-1llzll1, Yy €EY_1,Vz€EN.

Denote this extension also by (-,-)_1 1.
Consider the Bochner measurable functions in

A 1/2
()l = ( ||y<t>||$dt) . @)
/

Lt is the space of functionsy € L?(0,T; Y1), s.th. y € L?(0,T;Y_1).
L is equipped with the norm

lyllz, == (lyOIIZ2 + 19ONZ-1)

1/2

(9)



2. Evolutionary variational inequalities

Take T' > 0 arbitrary and consider for a.a. t € [0, T'] the evolution-
ary variational inequality

(y — Ay — B¢ — f(t),n—y)-11 (6)
+¥(n) —¥(y) >0, Vner
y(O) — Yo c YO )

w(t) = Cy(t) , &) € o(t,w(t)), (7)
£(0) = &o € E(yo) ,
z(t) = Dy(t) + E&(t). (8)

Ce (Y1, W),De L(Y1,Z)and FE € L(=,72),

=,W and Z are real Hilbert spaces, Y1 C Yo C Y_; is a real
Gelfand triple and A € L£(Yo,Y_1), B € L(=,Y_1),¢ : Ry X
W — 2= isaset-valuedmap, ¢ : Y1 - Ry and f : Ry — Y1
are nonlinear maps.

Denote by || - ||=, || - [lw, || - ||z the normin =, W resp. Z.

(N)
(y—Ay— B¢, y—m)_11+V(n) —W(y) >0
y(0)=yo , Vnew

Y -
(L)
w(t)=Cy(t)
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« (N)
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2(t)=Dy(t)+E£(t)

z

Fig. 1 State / linear output / nonlinear output / observation diagram



Definition 1 Any pair of functions {y (-),&(-)} with y € L and
¢ € L2 (0,00; =) such that B¢ € L, satisfying (6), (7) almost
everywhere on (0,T) , is called solution of the Cauchy problem

y (0) = yo, £(0) = &o defined for (6), (7) .
Assumptions:

(C1) The Cauchy-problem (6), (7) has for arbitrary yo € Yo and
&0 € E(yo) C = at least one solution {y (-),&(-)}.

(C2) a) The nonlinearity ¢ : R4y x W — = is a function having the
property that A(t) := —A — Bp(t,C-) : Y1 — Y_1 is a family of
monotone hemicontinuous operators such that the inequality

A y||-1 < cillyll1 +¢c2, VyeY,
is satisfied, where c; > 0 and c> € R are constants not depending
ont € [0,T].
For any y € Y3 and for any bounded set U C Yi the family of
functions {(A(t)n,y)-11, n € U} is equicontinuous with respect
to ¢t on any compact subinterval of R .

b) 1 is a proper, convex, and semicontinuous from below function
on D(v) C Yi.

(C3) f € L2 (Ry; Yo1).

loc

(C4) Consider only solutions y of (6),(7) for which y belongs to
L%C(R; Y_l).

Remark 1 When ¢y = 0 in (6) the evolutionary variational inequality
is equivalent for a.a. t € [0, T] to the equation

y=Ay+ B+ f(t) inY_q,

y(0) = Yo, w(t) = Cy(t), £&(t) € o(t,w(t)),
£(0) € E(yo),

z(t) = Dy(t) + E£(1).



w e, £(=z(0))

o =R_ =R /

o = {0}

Fig. 2 Fig. 3
Generalized play operator Play (model of plasticity with strain-hardening)

Definition 2 a) Suppose F' and G are quadratic forms on Y1 x =.
The class of nonlinearities N (F, G) defined by F' and G consists
of all maps ¢ : Ry x W — 2= such that for any

y(-) € L2 (0, 00; Y1) with y(-) € L2 (0, 00; Y_1) and any

£(-) € L2 _(0,00; =) with £(t) € p(t,Cy(t)) fora.e. ¢t > 0, it
follows that F'(y(t),&(t)) > 0O for a.e. ¢ > 0 and (for any such pair
{y, &}) there exists a continuous functional ® : W — R such that

for any times O < s < t we have
t

[ 6. = 2(Cy(®) - S(Cu(s))

b) The class of functionals M (d) defined by a constant
d > 0O consists of all maps ¢ : Y1 — R4 such that for any
y € L2 (0, 00; Yp) with y € L2 (0, oo; Y1) the function

t — 1 (y(t)) belongs to L1 (0, oo; R) satisfying /w(y(t))dt <d

0
and for any ¢ € N'(F,G) and any 1y € M(d) the Cauchy-problem
(6) — (8) has a solution {y(-),£(-)} on any time interval [0, T'].



3. Further assumptions

(F1) A e £(Y1,Y 1) is regular,i.e., forany T > 0,yg € Y1,
Y1 € Y1 and f € L?(0,T; Yp) the solutions of the direct problem

y=Ay+ f(t), y(0) =yo, aa.tel0,T]
and of the dual problem

b= A"+ f(t), ¥(T) =+r, aatel0,T]

are strongly continuous in ¢ in the norm of Y3.
A* e L(Y_1,Yy) denotes the adjoint to A, i.e.,

(Ay7 77)—1,1 — (y7 A*”ﬂ)—l,l ) \ Yy,n € Yl .

(F2) The pair (A, B) is L?-controllable, i.e., for arbitrary yo € Yo

exists a control £(+) € L?(0, co; =) such that the problem
y=Ay+ B§, y(0)=yo

is well-posed on the semiaxis [0, +o0) , i.e., there exists a solution

y(-) € Lo withy (0) = yo.

(F3) F'(y, &) is an Hermitian formon Y7 x =, i.e.,

F(y,ﬁ) — (Flya y)—l,l —I_ 2Re (Fang)E _I_ (F3 575)57
where

F, = Ff e L(Y1,Y_ 1), Fh e L(Yp, =), F3 = F;; cL(=,=).

Define the frequency-domain condition [Likhtarnikov and Yakubovich,
1976]
a:=sup([lyllT + IE12) T F(y,£),

w,Y,§

where the supremum is taken over all triples
(w,y,&) € Ry x Y7 x = such that iwy = Ay + B¢ .



4. Absolute observation - stability of evolutionary inequalities

For a function z(-) € L? (R4 ; Z) we denote their norm by

00 1/2
12Oz = ( / Hz(t)u%dt) .

Definition 3 a) The inequality (6), (7) is said to be absolutely di-
chotomic (i.e., in the classes N (F,G), M(d)) with respect to
the observation z from (8) if for any solution {y(-), £(-)} of (6), (7)
with y(0) = yo, £(0) = & € £(yo) the following is true: Either
y(+) is unbounded on [0, co) in the Yp-norm or y(-) is bounded in
Yo in this norm and there exist constants c¢; and ¢, (which depend
only on A, B, N(F,G) and M(d)) such that

1Dy() + BEOIZ,2 < e1(llyollg + c2) - 9)

b) The inequality (6), (7) is said to be absolutely stable with re-
spect to the observation = from (8) if (9) holds for any solution

Definition 4 The inequality (6)—(8) with f = O is said to be mini-
mally stable if the resulting equation for ¢» = 0 is minimally stable,
l.e., there exists a bounded linear operator K : Y1 — = such that
the operator A + BK is stable, i.e. for some ¢ > 0

c(A+ BK) C{seC:Res< —e<0}
with tF(y,Ky) >0, VyeY, (10)

and /G(y(T), Ky(t))dr > 0,

Vs,t:0<s<t, VyeLi. (R Y7). (11)



Theorem 1 Consider the evolution problem (6) — (8) with
0 € N(F,G) and ¢ € M(d). Suppose that for the operators
A€, B¢ the assumptions (F1) and (F2) are satisfied. Suppose also
that there exist an a > O such that with the transfer operator

X (s) = D(sI° = A) 1B+ E°  (s¢o(A)) (12
the frequency-domain condition

Fe ((iwl® — A°)~1B%, )
+ G ((wI° — A) 71 B%,€) < —allx D (w)E]l2.

VweR:iwe&oag(A®), VEez=°
is satisfied and the functional

J(y(-),€()) ZZ/[FC(y(T),ﬁ(T))-I-Gc(y(T),ﬁ(T))
0]

+ al|D%y(7) + E€(n)|3.] dr
is bounded from above on any set

My, ;= {y(-),&() 1y =Ay+ B on Ry,
Suppose further that the inequality (6)—(8) with f = 0 is minimally
stable, i.e., (10) and (11) are satisfied with some operator K €

L(Y1,=) and that the pair (A + BK,D + EK) is observable in
the sense of Kalman, i.e., for any solution y(-) of

with z(t) = (D + EK)y (t) = 0 for a.a. t > 0 it follows that
y(0) =yo=0.

Then inequality (6), (7) is absolutely stable with respect to the ob-
servation z from (8).

Proof: Reitmann, V. and H. Kantz, Observation stability of con-
trolled evolutionary variational inequalities. Preprint-Series DFG-
SPP 1114, Preprint 21, Bremen, 20083.



5. Application of observation stability to the beam equation

Consider the equation of a beam of length [, with damping and
Hookean material, given as

82 ou 0 [(EA ou
G(=))=o0 1
pA 52 T 7% 833( 3 9 (896)) : (13)
u(O,t)zu(l,t)ZO for t>0, (14)

w(x,0) = uo(x), ui(x,0) = ui(x) for x= € (0,1). (15)

Here w is the deformation in the = direction. Assume that the cross
section area A, the viscose damping -, the mass density p and the
generalized modulus of elasticity E are constant. The nonlinear
stress-strain law g, is given by

jw)=14+w—-14+w) 2, we(-1,1). (16)
Assume that g(w) = g(w) + w.

A82u_8 EA Ou I 8u_8 EA [Ou — 0

P02 "9z \ 3 az) " ot oz \ 37 \oz))
Assume also that V1 C Vo C V_1 is a Gelfand triple with

Vo := L?(0,1), V1 := H3(0,1)and V_; : = H~'(0,1). (18)

Then equation (13) — (15) can be rewritten in V_; as

pAuy + A1u + Asuy + C*'g(Cu) = 0, (19)
u(0) =wuo, wu(0)=wua, (20)

with A1 € L(V1,V-1), Az € L(V1,V_1) (strong damping),

C e L(V1,V) and g : Vo — V. The operators A; and A are
associated with their bilinear forms a; : V1 x V1 - R (1 = 1,2)
through (Av, w)y v, = ai(v,w), Vo,w € Vp.




Assumptions:

(A1) a)

(A3) a)

The form a; is symmetric on Vo x V.

ai IS Vi continuous, i.e., for some c¢; > 0O holds
a1 (v, w)| < ci|vllv,|lwllyv,, Vv,we Vi,

a1 is strictly V-elliptic, i.e., for some k1 > O holds
ai1(v,v) > kiljvl|3 , Vv e V.

The form a» is Vi continuous, i.e., for some ¢ > 0O
holds |az(v, w)| < co|lv||y,[|wlly, , Yv,w € V1.

The form a2 is V1 coercive and symmetric, i.e., there
are ko > 0and \g > 0 s.t.

as(v,v) + >‘0||U||12/o > I€2||’U||12,1 and

az(v,w) = ax(w,v), Vov,wée€ V.

The operator C € L(V1, Vo) satisfies with some
k > 0 the inequality

ICollv, < VE[ollv,, YveVr.

g : Vo — Vo is continuous and ||g(v) ||y, < cil|v]||v, +
cp for v € Vo , where ¢ and ¢, are nonnegative con-
stants.

g is of gradient type, i.e., there exists a coninuous
Frechét-differentiable functional G : Vo — R, whose
Frechét derivative G'(v) € L(Vo,R) at any v € Vg
can be represented in the form

G ()w = (g(v),w)y,, YweENo.

g(0) = 0 and for some positive £ < 1 we have for all
v, w € Vo

(g(v) — g(w),v —w)y, > —8]{51]6_1H’U — w||]2,O .
(21)



Definition 5 We say that u € L is a weak solution of (19), (20) if

(wit, M)y, v, + a1 (u,m) + a2 (u,n) + (g(Cu),Cu)o =0 (22)
Vne Ly, a.a.te[0,T].

Introduce Yy := V1 XV in the coordinates y = (y1,y2) = (u, ue).
Define forthisY; :=Vi1 x Vianda : Y1 X Y1 — R by
a((v1,v2), (w1, w2)) = (v2,w1)y, — a1(vi, w2) — az(v2, w2),

V (v1,v2), (w1, w2) € Y1 X Y7.
(23)

The norms in the product spaces Yy and Y; are

1Cy1, v2) 18 = vl + lv2ll3, . (v1,92) € Yo,

and

ICyr, 92)11 = llall$, + llv2ll5, . (y1,92) € 1.
Then (22) can be rewritten as

(y,m)-11—aly,n) = (Be(Cy),n)-1,1,y(0) = (uo, u1),

VneYr,
(24)
where Bp(Cy) := ( —C*gO(Cyl) ) : (25)
y = Ay + By (Cy), y(0) = yo, (26)

B [ o 1
a(v,w) = (Av,w)_11, Vv,w€eYr, Iie,A= [ A Ao ] .

Y1 C Yo is completely continuous, A generates an analytic semi-
groupon Yy, Yoand Y1 = Vi1 X V_1.



The semigroup is exponentially stable on Y1, Yo and Y_1 , the pair
(A, B) is exponentially stabilizable.
Consider with parameterse > 0and a € R

0%u n 2€8u 0%u 0 ou - 0 ¢

— — —a—=—a|— | —qg | — — a—

Ot2 Ot Ox? Ox J Ox ox >’
2

the boundary and initial conditions (14), (15), where £ = —g = ¢
is introduced as new nonlinearity.

Assume that ¢ € N (F), with the quadratic form F(w,£) =
pw? — &wonR x R, where . > 0 is a certain parameter.

A > 0and e, (k= 1,2,...) are the eigenvalues resp. eigen-
functions of the operator — A with zero boundary conditions.
Write formally the Fourier series of the solution u(x,t) and the
perturbation £ (z, t) to the (linear) equation (27) as

u(z,t) =) u(t)er and g(z,t) =) &(er. (28)
k=1

k=1

Introduce the Fourier transforms @ and & of (28) with respect to the
time variable. From (27) for k = 1, 2, ... it follows that

—w?T" (iw) + 2iwet” (iw) + MG"(iw) = —a\/rkfk (iw) ,

(29)
" = x (iw, \) &, (30)

X (iw, A\p) = (—w? + 2iwe + adp) " (ady),
VweR: —w? 4 2iwe +aX; # 0. (31)

Consider the functional

oo pl
J(w, &) .= Re /o /o (p|w|? — we*) dadt . (32)



The Parseval equality for (32) gives

=3 @R =3 MEE P =D AelxGw, A 2IER 2
k=1 k=1 k=1

BHE = megk)* > VA (iw, M)IEP.
k=1

Then [Arov and Yakubowch, 1982] the functional (32) is bounded
from above if and only if the functional

+oo pl 00
Re/ / [ (Z e x Giw, A\p)|?|EF)
—oe 70 k=1
- \/rkX(iwaAk)EkF)]da:dw (33)
k=1

is bounded on the subspace of Fourier-transforms from (30), (31)
or the frequency-domain condition

e x Giw, AR ? — /A Rex(iw, \g) <0, (34)
VweR: —w? +2iwet+aX, #0, k=1,2,...,

is satisfied, where x (iw, \;;) = (—w?+2iwe+ad;) T (—av ) .



