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1. Introduction

Suppose: Yy a real Hilbert space, (-,-)o and || - ||o the scalar
product resp. the norm on Yo,

A : D(A) — Y, the generator of a Cp-semigroup on Y,

Y1 = D(A)

For fixed 8 € p (A) N R for any y,n € Y7 define

Y_1 is the completion of Yy with respect to the norm,
lyl|—1 :=||(BI — A)~1y||lo is the scalar product

(y,m)-1:= (BT - A)~ty, (BI—A)"'n),, VymeYo
(2)

Y1 C Yo C Y_1 is a continuous embedding, i.e., fora = 1, 0,
Yo CYo-1, HyHOé—l < CHyHa, Vy € Y.

(Y1, Yo, Y 1) is called a Gelfand triple.
Forany y € Yp and z € Y; we have

|(y, 2)ol = [(BI — A) "'y, (BT — A)2)o| < llyll-allzlla.  (3)
Extend (-, z)o by continuity onto Y_1

(v, 2)o] < |lyll-1llzll1, Yy €EY_1,VzeV.

Denote this extension also by (-, -)_1 1.
Consider the Bochner measurable functions in

A 1/2
() llay = ( Ol dt) . @)
/

L is the space of functionsy € L?(0,T;Y1),s.th. y € L?(0,T;Y_1).
L is equipped with the norm

lyll, == (lyOIIZ1 + 19O 1)

1/2

(9)



2. Evolutionary variational systems

Take T' > 0 arbitrary and consider for a.a. ¢ € [0, T] the
evolutionary variational equation

(y — Ay — B — f(t),m—y)-11 =0, VneYr (6)
y(o):yOEY07

w(t) = Cy(t), &@) =e(t,w(t)), (7)
S(O) — gOa
2(t) = Dy(t) + E&(¢) . (8)

Cel(Y1,W),DeL(Y1,Z)and E € L(=, Z2),

=, W and Z are real Hilbert spaces, Y1 C Yy C Y_; is a real
Gelfand tripleand A € £(Yy,Y_1), B € £L(=,Y_1),

o Ry xW == f: Ry —Y_1.

Denote by || - ||l=, || - [lw, [ - ||z the normin =, W resp. Z.

Definition 1 Any pair of functions {y (-),&(-)} with y € L, and
¢ € L2 (0,00; =) such that B¢ € Ly, satisfying (6), (7) almost
everywhere on (0,T") , is called solution of the Cauchy problem

y (0) = yo, £(0) = &o defined for (6), (7) .

Assumptions:

(C1) The Cauchy-problem (6), (7) has for arbitrary yo € Yp and
£o C = at least one solution {y (-),&(-)}.

(C2) The nonlinearity ¢ : Ry x W — = is a function having the
property that A(t) .= —A — Bp(t,C") : Y1 — Y_; is a family of
monotone hemicontinuous operators such that the inequality

[A@yll-1 <cillylls +e2, Vyel,

is satisfied, where c; > 0 and c> € R are constants not depending
ont e [0,T].



For any y € Y1 and for any bounded set U C Yi the family of
functions {(A(t)n,y)-1.1, n € U} is equicontinuous with respect
to t on any compact subinterval of R ..

(C3) fe L. (Ry; Y1),

(C4) Consider only solutions y of (6),(7) for which y belongs to
LFOC(R; Y_l).

Definition 2 Suppose F' and G are quadratic forms on Y1 x =. The
class of nonlinearities NV (F, G) defined by I and G consists of
all maps ¢ : Ry x W — = such that for any

y(-) € L2 (0, 00; Y1) with y(-) € L2 (0, 00; Y_1) and any

£(-) € L2 (0,00; =) with £(t) = o(t,Cy(t)) fora.e. t > 0, it
follows that F'(y(t),&(t)) > 0O for a.e. ¢ > 0 and for any such pair
{y, &}) there exists a continuous functional ® : W — R such that

for any times O < s < t we have
t

/G(y(TLf(T))dT > ®(Cy(t)) — P(Cy(s)) -

S

3. Further assumptions

(F1) A e £(Y1,Y_1) isregular,i.e., forany T > 0,yg € Y1,
Y1 € Y1 and f € L?(0,T; Yp) the solutions of the direct problem

y=Ay+ f(t), y(0) =yo, aa.tel0,T]
and of the dual problem
b= —A"p+ f(t), Y(T) =+r, aatel0,T]

are strongly continuous in ¢ in the norm of Yj.
A* € L(Y_1,Yy) denotes the adjointto A, i.e.,

(Aya 77)—1,1 — (ya A*n)—l,l ) \ y,n < Yl .



(F2) The pair (A, B) is L?-controllable, i.e., for arbitrary yo € Yo
exists a control £(+) € L?(0, oco; =) such that the problem

y=Ay+ B¢, y(0)=uyo

is well-posed on the semiaxis [0, +0) , i.e., there exists a solution
y(-) € Loo With y (0) = g0

(F3) F(y, &) is an Hermitian formon Y7 x =, i.e.,

F(y7 "S) — (F1y7 y)—l,l + 2Re (Fan "S)E + (F3 57 "S)Ea
where
F, = Ff e L(Y1,Y_ 1), Fh e L(Yp,=), F3 = F3* cL(=Z,=).

Define the frequency-domain condition [Likhtarnikov and Yakubovich,
1976]

o= Surg(l\yl\% + €12 F (v, €)
Wy,

where the supremum is taken over all triples
(w,y,€) € Ry x Y7 x = such that iwy = Ay + B€.



4. Absolute observation - stability of evolutionary equations

For a function z(-) € L? (R ; Z) we denote their norm by

00 1/2
12Oz = ( / I\z(t)l\%dt) .

Definition 3 a) The equation (6), (7) is said to be absolutely di-
chotomic (i.e., in the class N (F,G)) with respect to the ob-
servation z from (8) if for any solution {y(-),&(-)} of (6), (7) with
y(0) = yo, £(0) = &p the following is true: Either y(-) is un-
bounded on [0, co) in the Yp-norm or y(-) is bounded in Y} in this
norm and there exist constants ¢; and c» (which depend only on
A, B and N (F, G) such that

IDy() + BEOI3,2 < e1(llyollg + c2) - (9)

b) The equation (6), (7) is said to be absolutely stable with re-
spect to the observation z from (8) if (9) holds for any solution

Definition 4 The equation (6)—(8) with f = O is said to be mini-
mally stable, i.e., there exists a bounded linear operator K : Y; —
= such that the operator A + BK is stable, i.e. for some € > 0
c(A+ BK)C{seC:Res< —e<0}
with Fy,Ky) >0,  Vyen, (10)

and /G(y(T) , Ky(1))dr > 0,

Vs, t:0<s<t, Vyc€Li.(Ry;Y1). (11)



Theorem 1 Consider the evolution problem (6) — (8) with

o € N(F,G). Suppose that for the operators A¢, B¢ the assump-
tions (F1) and (F2) are satisfied. Suppose also that there exist an
« > 0 such that with the transfer operator

X (s) = D(sI¢ — A) B4+ E°  (s¢o(A9)) (12
the frequency-domain condition
Fe ((iwl® — A°)~t B, €)

+ G ((iwI¢ — A®)~1B%,¢) < —alx® (iw)€||2.

VweR: iw&ag(A®), VEe =€
Is satisfied and the functional

J(y(-),€()) 1=/[Fc(y(T),S(T))-I-Gc(y(T),S(T))
0

+ al|D%y(r) + E¢(n)|3.] dr
is bounded from above on any set

M?Jo L= {y()ag() : y — Ay + B£ on R‘F)
Suppose further that the equation (6)—(8) with f = 0 is minimally
stable, i.e., (10) and (11) are satisfied with some operator K €
L(Y1,=) and that the pair (A + BK, D + EK) is observable in
the sense of Kalman, i.e., for any solution y(-) of

y=(A+ BK)y, y(0)=uyo,
with 2(t) = (D + EK)y(t) = 0 for a.a. t > O it follows that
y(0) =y0=0.
Then equation (6), (7) is absolutely stable with respect to the ob-
servation z from (8).

A. L. Likhtarnikov and V.A. Yakubovich, 1976
Reitmann, V. and H. Kantz, 2003



5. Example

Consider the coupled system of Maxwell’s equation and heat
transfer equation

wtt + O'(CB, Q)Wt — \Umg =0
O — Opy = o(x,0)W?

Initial-boundary conditions:

W (0,t) =6(0,t) =0,

W(l,t) =6(1,t) =0 Vte[0,T]

\U(ZC, O) — \Uo(ib), \Ut(ib, O) — Wl(x)ae(xa O) — 90(56)7 Vr € Q2

(14)

Herez € ,t € [0,T],T > 0,2 = (0,1).

Energy inequality:

sup / [\U2+\I12]d:c+/ / o(x,t,0)W2drdt

0<t<T

< Ci+ CQ/ / |9‘dicdt

where the constants C; and C> depend only on known data.

System in terms of operator equations in some function spaces:

Y1 \Ut(ib,t)
y(il?,t) — Y2 — W(:Cat) ) (15)
Y3 Q(ZC,t)

— 5 - O'(Q?,@)Wt(x,t)
S t) = ( & ) = ( o (x, 0)W2(x, £) )

Let us define operators A, B from equation (6). Let A be the self-
adjoint positiv operator, generated on L2(0, 1) by the differential
expression A(v) = —wv,, and zero boundary conditions (14).



Consider the following spaces Yo = L?(0,1)x L?(0,1)xL?(0, 1),
Y: = Wh2(0,1) x Wh2(0,1) x W12(0,1) and = = L?(0, 1) x

L?(0,1) as defined in Section 1. Thus (F1) of Theorem 1 is satis-

fied.

Then operators A and B are defined as follows:

ool A O I 0
A=| -1 o o0 |,B=| 0 o, (16)
0 0 —A 0 I

Here constant o9 > 0 is derived from decomposition o(x,0) =
oo+ o(x,0).

Finally, system (13) can be written in terms of the operator equation

— = Ay + B¢ (17)

Consider the quadratic form F'(y, £) defined by
F(y7 "S) — Y1~ 51 — \Ut(x,t) : 0-(337 H)Wt(xa t) (18)

The pair (A, B) is L?— controllable since the matrix operator A is
stable.

Consider the eigenvalue equation for A
Av = dw. (19)

Denote by \; the eigenvalues of operator A and by e, its eigenvec-
tors, such that {e; }, forms a basis of L2(0, 1).

Vector v can be decomposed in this basis {e;}x as

V; — cfek .

k



Eigenvalue equation (19):

—v1 = AU
—oov1 + Aovo = v
—Apvsz = A\us

— chek = )\ZCQGk
—achlek + ZAk%ek = )‘chek (20)
— Z )\k,c36k = )\ Z ckey

N\

\

Verification of the frequency domain condition:

Functions W (x,t),0(x,t),&(x, t) can be decomposed by {ex } as
follows:

W(a,t) =) V(e 0(x,t) =) 0" (Der,
k k
E(a,t) =) (e
k

Introduce the quadratic form (Mo (iw)é, &) = F(y, ), where F(y, €)
is the extension of the quadratic form F'(y, &) to the Hermitian form

(F3).

Then the matrix-function Mg (iw) can be presented as

(Mo(iw)E &) = (Nh(iw)ek, k). (21)
k

Fourier transform with respect to ¢:

—wQWk(zw) + zwao\lfk’(zw) )\k\lfﬁf(iw) + gf(zw) =0 (22)
zw@k(zw) + Akﬁk(zw) &(iw) =0



From (22) Wk and 0k can be expressed in terms of 57;,5’7; in the
following way:

W (iw) = xo(iw, Ap)ER(iw),
Ok (iw) = x1(iw, Ap) &5 (iw),
where

xo(iw, A\p) = (w? — iwog + Ap) 7L,
x1(iw, Ap) = (iw + Ag) L

(I‘I’g(iw)g’ﬂ, £k) from (21) can be written as follows:
(M (iw)ek, €)) = ReWw €F = Re(iwxo) €5 (iw)|?

Here the matrix Mg (iw) has the following form

k- . Re(iwx()) 0
i) = ( g ° 23)
We have to check that
Re(iwxo) < 0,Vw € R,w#0 (24)
Condition (24) is equivalent to Re(—"2—) < 0.

This is satisfied if —w?0g < 0,Vw # 0.
Remark We can also consider another quadratic form instead of
(18)

F(y,&) = —y3éo + ay1&1 + bE3 (25)

For the slightly modified version of equation (13):

wtt + O'(CB, Q)Wt — \Umg =0 (26)
0 — Ope = o(z,0) W2 + W



6. Experimental results
Consider system (13) - (14) in the form

hi +o(x,0)h — WV, =0
Oy — Opr = O'(CC, 0)h2

Initial-boundary conditions:

w(0,t) = 6(0,t) =0,

W(1,t) =6(1,t) =0 Vte[0,T]

W(z,0) = Wo(x), h(x,0) = ho(x),0(x,0) = Op(x),Vx € Q2
(28)

ho(x) =p-(1—1|2z—1]), Vo(x) =0, o(x) = p- (1 — |22 —1]),
where p € R is some parameter.

J. Morgan, H.-M. Yin, 2001

Electrical conductivity: o(x,0) = ¢ + 6(«x,t), where c is some
positive constant.

For convention: Denote h(z,t) by W;(z,t).

Consider solutions (W?(x,t), WP(x,t), 0P (x,t)) withp € [-0.5,0.5].
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WP(xo,t), 0 = 0.5,t € (0,200)

WP(z,t),t € (0,200),p = 0.5



\Uf(a}o,t},a}o = 0.5,t € (0,200)

WP(z,t),t € (0,200),p = 0.5
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