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1. Introduction

Let (Q,d) be a metric space called the base space.
The pair ({7'},cx,(Q,d)) where 7' : Q — Q for each
t € R is called the base flow if

O .
TV = idg,
ttoTs =115  Vt,s € R. (1)

Let (M, p) be an other metric space (phase space).

Definition 1 The  pair  ({¢"(q,)}ier, geq > (M, p))

where ¢'(q,-) : M — M for eacht € Ry,q € Q is called
a cocycle over the base flow ({t'},.r,(Q,d)) if

et (q,) = o' (m°(q), ¥°(q,-)) Vg € Q, Vt,s € Ry. )
2

For brevity the cocycle ({¢!(q, )} er, qe0 s (M, p)) over
the base flow ({7'},cr, (@, d)) will be denoted by (¢, 7).

Define the space M = @ x M with the metric

ﬁ((qlaul)a (QQ,UQ)) = maX {d(Q17q2)7p(u17u2)} )
(q“uz) € Q X M,’L — 172

—_—~ o~

and the family of mappings S* : M — M, t € Ry,
S*q,uw) = (7'(a), ' (g, ). N

The dynamical system ({St}teR+ ,(M,p)) is called skew
product flow.



A non-autonomous set C = {C(q)}qu iS @ mapping

Q — 2M. A nonautonomous set is called bounded
(closed, compact) if for any ¢ € @Q the set C(q) is
bounded (closed, compact) in M.

A bounded non-autonomous set C is said to be a glob-
ally B-pullback absorbing set for (¢, 7) if for any g € Q
and any bounded set B C M there exists a T'= T'(q, B)
such that ©'(77%(q,B)) C C(q) for t > T.

A non-autonomous set C is called globally B-pullback
attracting for (o, 7) if for any ¢ € Q and any bounded
set BC M

im dist(¢'(17(¢), B),C(q)) = O,
where dist is the Hausdorff semidistance in (M, p).

A non-autonomous set C is called invariant (positively
invariant) for (p,7) if for any ¢ € @Q and ¢t > 0 the

equality ¢'(q,C(q)) = C(7'(q)) (inclusion ¢'(q,C(q)) C
C(7t(q))) holds.

Definition 2 A non-autonomous set is called a global
B-pullback attractor for the cocycle (¢, T) if it is com-
pact, invariant and is globally B-pullback attracting.

For the existence proof of a B-pullback attractor we
will use the following theorem [Kloeden-Schmalfuss,
1987]:

Theorem 1 Let the cocycle (¢,7) have a compact
globally B-pullback absorbing set C = {C(q)},cq-



Then (p,7) has a unique B-pullback attractor A =
{A(@)},eq Where for each q € Q

A(q) = Nier,Us>tser, @*(775(q),C(775(q)).

2. Existence of a B-pullback attractor for the
1-dimensional microwave heating problem

To describe the microwave heating process we will
consider for any T' < oo a coupled system of Maxwell’'s
and heat transfer equations:

eE;+ocFE =rotH, (x,t) €2 x(0,7T),
wHy 4+ rotE = 0, (z,t) €e 2 x (0,T),
b(0) — A = o| B2, (z,t) € Q2 x (0,T),

where E(z,t) is the electric field, H(x,t) is the mag-
netic field, 0(x,t) is the temperature, o(x,0) is the
electrical conductivity, e(x,t) is the electric permittiv-
ity, u(x,t) is the magnetic permeability, and

bl(S), s< 0
b(s) = { [b2(8),ba(D)], s=10
b2(8)7 S > 9,

is some piecewise smooth function with differentiable,
monotone increasing functions b1(s), b2(s), such that
b1(0) < b2(0).

The derivation of the 1-dimensional microwave heat-
ing problem is given in [H.-M. Yin et al., 2006]:



( t:Ca $€(0,1),t>0,
Ct — wm - 0(9)C7 S (07 1)7 t> Oa
b(0); = 0. + 0 (0)C2, x € (0,1), t >0,
¥(0,t) =0, ¥(1,t) =0, t>0,

] 6(0,¢) =6(1,t)=0,  t>0,
¢(3370) — ¢O($)7 S (07 1)7
C(:Ca O) — CO(:C)a S (07 1)7
0(z,0) = bo(x), z € (0,1).

\

Our goal is to show specific asymptotic behaviour of
solution’s components, such as asymptotic stability.

Consider the initial-boundary problem

Wi — Wy +0 () wy =0, 0<x<l, t>0 (3)
0r — 00 = o (0) w2, O<z<1l t>0

w(07t):f1(t)7 w(lat):fQ(t)a t>0 (4)
0(0,t) =06(1,t) =0, t>0

w(z,0) =wo (z), wi(x,0)=wi(z), 0<z<1
0 (x,0) =60 (x), O<z<1

(5)

where 0(x,t) is the temperature, w(x,t) is the time
integral of the nonzero component of the electric field,
o(0) is the electric conductivity, fi(t), f>(t) are the
external perturbations of the electric field.



Assumptions:
(A1.1) o is locally Lipschitz on (0, 4+00);

(A1.2) There exist constants 0 < o9 < o1 such that
o0 < o(z) <o for any z > 0O;

(A1.3) o is monotone decreasing.

(A2) wo € LQ(O,].),U}]_ S L2(071)790 S L2(071)790 > 0
a.e. on (0,1).

(A3) f1, f> are C?(R) and there exists a constant c such
that the functions |fi],|f5],|f{],|f5| are bounded
on R by c.

Modification of the existence theorem for weak
solutions from [H.-M. Yin et al., 2006] for the 1-
dimensional case:

Theorem 2 For any T > 0 there exists a global weak
solution (w(x,t),0(x,t)) of the problem (3)-(5) such
that w € C([0,T]; L%(0,1)), 6 € L?(0,T;H'(0,1)) N
C([0,T]; L*(0,1)).

Additional assumption:

(A4) The weak solution is unique.



Denote f(z,t) = f1(¢t)(1 —xz) 4+ fo(¢t)z and
Y(x,t) = w(x,t)—f(x,t) and introduce the system with
homogeneous boundary conditions, i.e.

Y = ¢ — Ji,
Gt = ¢xm_0(9)ga (6)
9t=9m—|—a(9)(¢t—|—ft)2, O<zxz<l1l, t>0

with initial and boundary conditions

¥(0,t) =v¢(1,) =0, 0(0,¢t)=0(1,t)=0, t>0
(7)

Y(x,0) = Yo(z) = wo(x) — f(x,0), 0<z<1
¢(x,0) = (o(x) = wi(zx) — fi(z,0), 0<zx<1l (8)
0 (x,0) =0 (x), O<z<1.

Transformed assumption (A2):

(Az’) wo S H(%(O71)7C0 S L2(071)790 S LQ(Oal)aQO Z 0
a.e. on (0,1).

Introduction of the cocycle corresponding to the
problem (6)-(8)

Define the metric space

M = H}(0,1) x L?(0,1) x (L?(0,1)Nn{6: 6 > 0}) with
the norm

1(, ¢ O = 1%l Z00.0y F 611 Z2¢0.1) F 10117:0.1-
In our situation: Q =R, 7i(s) =t+s, Vt,seR

th(87 U’O) — 'U,(t _|_ S, S, U’O)a



where u(t, s,ug) = ((-,t),((-,t),0(-,t)) is the solution
of (6)-(8) such that u(s,s,uo) = uo = (%o, (o, 0o)-

From existence and uniqueness of the solution we con-
clude (I. Ermakov, Y. Kalinin, V. Reitmann, 2011):

Theorem 3 The system (6)-(8) generates a cocy-
cle ({¢'(s, ) hier, ser » (M, |I|lp)) over the base flow

({Tt}teR ,R).
Proof of the existence of an absorbing set:

e Lyvapunov function for the 1st subsystem
(damped wave equation);

e monotonicity methods for the 2nd subsystem
(heat equation).

Damped wave equation. Consider the initial-
boundary problem for the wave equation separately:

wtt_wa:x_l_a(x;t)wt:ftt—O'(CB,t)ft, O<x< 1, t(>§
9
¥(0,t) =¢¥(1,t) =0, t>s (10)

Y(@,s) =to, Pi(w,s) =11, 0<z<1 (11)

where s € R. Here o(x,t) is a certain function.

Modified assumptions (A1)-(A3):

(A1.2%) There exist constants 0 < g < o1 such that
oo < o(x,t) <op forall z € (0,1),t > 0.



(A2%) <o € H5(0,1),¢1 € L*(0, 1).

(A3*) The function f(z,t) is C! in z, C? in t and there
exists a constant ¢ > 0 such that |f]| < ¢, |fzt| < ¢,
| fir| < c for any =z € (0,1),t € R.

Under the assumptions (A1.2%*) - (A3%*) the problem
(9 - 11) has a unique solution (¢ (-,t),v(-,t)) € M1 =
HL(0,1) x L?(0,1) [R. Temam, 1993].

For (v,() € M; define

||(¢,C)||§41 — ||¢w||%2(0,1) + ||C||%2(o,1)

Write equation (9) as first order system

,’vb — C - f7
G = Vas — 0, 1)C (12)

with boundary and initial conditions
P(0,t) =¥(1,t) =0, t>s (13)
lb(ﬂ%s) — ¢O($)aC($>S) — CO(x)a O<z<1 (14)

Proposition 1 For any t > 0 there existT >0, ¢> 0
such that ||(v(-,t;s),¢(,t;8)) [y, <c forany s<t-T.

Idea of the proof: Lyapunov functional on M;

V (), ¢) = 1wl + 2X(, ¢) + |I¢])?

where A > 0 is a parameter. ||| and (-,-) are in
L?(0,1).

Denote V(t) =V (v (-, t),C(+,t)).



We prove that there exist § > 0, ¢1 > 0 and ¢ € R
such that

d
dt
V() <e IV (s) + e,
for any t,s, t > s.
The nonlinear heat equation (2nd equation of (6))
General setting (A.A.Pankov, 1983):

Suppose that E C H C E’ is a Gelfand triple, i.e.
(E,||'l|g) is a reflexive Banach space, H is a Hilbert
space, E’ is the space dual to E, E is continuously
and densely embedded into H.

Suppose that A(t) : E — E’ is a family of operators
and f: R — E’ is a measurable function .
The operator A(t) : E — E’ is monotone, i.e.

(A(H)u — A(t)v,u —v) >0, Yu,v € E.

Here (-,-) is the duality pairing on E x E’, coinsiding
on FE x E with the scalar product in H.

Consider the evolution equation

du ~
— T A®u=J@). (15)

Suppose that there is an o« > 0 such that
(ADu — A()v,u —v) > allu—v||*? Yu,v e E. (16)



Define the following function spaces:

e (W(R, F) is the set of continuous functions
f R — E, for which supscr || f(t)] g is finite.

e BSP(R,E),1 <p< oo isthesubspacein L] (R, E),
consisting of functions with finite norm

t+1
11 = sup ( [ ds) |

Consider the heat equation in the form

0r — 020 = 0(0)g(z,1).

Suppose that g(x,t) > 0 is measurable and uniformly
bounded in t. We have g(z,t) = (¢i(z,t) + fi(z,t))?.
For o the assumptions (A1.1)-(A1.3) hold.

o(0) = oo+ 5(0), where o¢ is from (A1.2). We get
0y — O0pr — 5(0)g(x,t) = 00g(z,t), O<x<l, t>s

(17)
6(0,t) =0(1,t) =0, t>s (18)
0(x,s) =60(x), O<ax<l. (19)

The initial-boundary problem (17)-(19) generates an
evolution equation (15), where _
A(H)u = —u"—g(x,t)o(u) foru € E and f(t) = gog(-,1).

In our situation we have E = H}(0,1) and H =
L?(0,1). Check condition (16). Let u,v € H3(0,1),
n=wu—v. Ihen

(A@)u—A@)v,u—v) = (=", M+ (g, ) (G(v)—5(uw)),n) =
= (7, n) + (g(,0)(E(v) —5(u)),n) > |In|I*.



A.A. Pankov, 1983:

1. The Cauchy problem for equation (15) has
a unique solution w € BS?(R,H3(0,1)) N
Cy(R, L?(0,1)). For the equation (17) this
means that there exists a constant c¢; such that
10(-,t;8)|| < c1 for any t,s € R, s < t.

2. We have the estimate

101(-, t; 8) — 02(-, 85 8)|| < e =) ||6o1 — O0a]|, (20)

for t > s, where 6;(x,t;s) is the solution of (17)
with initial data 0p; and initial time s.

The constant ¢; does not depend on initial data:

1 t 1
O(w,t;5) = / Gz, ; t, $)00(y)dy+ / / G, i t,1)g(y, r)drdy,
0 s 0

where G(xz,y;t,r) is the corresponding Green's func-
tion which satisfies

C3

Vi—s

The influence of initial data tends to zero for t — oo.

G (@, y;t,5)| <

Make the initial time s tend to —oo, which corresponds
to the time shift in g(x,1t).

Proposition 2 Let 0(-,t;s) be the solution of (17)-
(19). There exists a constant ¢ such that for all t and
s < t the inequality ||0(-,t; s)|| < ¢ holds where ¢ does
not depend on 6g.



From uniform boundedness in s of solutions of the
wave equation and the heat equation we obtain

Theorem 4 The cocycle (o, T) generated by problem
(6) — (8) has a globally B-pullback absorbing set.

Applying the Kloeden-Schmalfuss Theorem, we get

Theorem 5 The cocycle (o, T) generated by problem
(6) — (8) has a global B-pullback attractor.

3. Determining functionals for cocycles

Physical meaning: Asymptotically finite-dimensional
dynamics

C. Foias, G. Prodi, 1967

O. Ladyzhenskaya, 1975

I.D. Chueshov, 1998

I.D. Chueshov, J. Duan, B. Schmalfuss, 2001.

If the system has a global attractor, such functionals
can give an approximation of the attractor.

Let ({S'}ier, » (B, |I[)) be a dynamical system on Ba-
nach space (E, |||]).

Definition 3 The set {lj};.v:l of linear continuous

functionals on E is called a set of asymptotically
determining functionals for the dynamical system
({S*}ier, » (B, [I-1)) if for any ui,uz € E the condition

Jim 1;(S"(u1)) — 1;(S"(u2))| =0, j=1,..,N



implies
lim HSt(ul) — St(uQ)H = 0.

t——+oo

Introduce the determining modes which are important
examples of determining functionals.

Definition 4 The determining modes for the dynam-
ical system ({St}t€R+,(H,(-,-))) on a Hilbert phase

space (H,(-,-)) are determining functionals [;(-) =
(-,e;) where {ej}iv are some elements of H.

The notion of pullback-asymptotically determining
functionals for processes was introduced in [J.A.
LLanga, 2003]. We give a generalization for cocycles.

Definition 5 The set {lj}j-v:l of linear continuous

functionals on Banach space (M, ||-]|) is called a set
of pullback-asymptotically determining functionals for
the cocycle ({¢'(q,)}e0.ier, » (M, |I|1)) over the base

flow ({7'},cr, (@, d)) if the condition
im0 (7 (0, un) = (' (7 (9), u2)) | = 0
for any q € Q, ui,up € M, 3=1,.., N implies
Jim ' (77 (@), u1) — o' (v7"(q),u2)|| = O.
Let (p,7) be a cocycle on a Hilbert phase space H,

w1 be the projector from H onto a finite-dimensional
subspace of H and m» be its complement.



Assumptions:

(H1) The non-autonomous set {C(q)},o is positively
invariant for (p, 7).

(H2) For any ¢ € Q there exists § = 6(¢q) € (0,1) such
that for all s > 1,u,v € C(77%(q))

[m2(e* (77%(q), u) — @' (77°(@), v))|| < 6(q) llu—v]|.

Let a1,a> : Q — H be mappings such that a;(q) € C(q)
for any q € Q.

(H3) For any € >0, t > 0 there exists an L = L(e) € N
such that for any g € Q

5()% || (g, a1(9)) — ¢ (g, az(a))||” < e,
and L(e) — o if e — 0.

The next theorem [I. Ermakov, Y. Kalinin, V. Reit-
mann, 2011] is a generalization of Theorem 14 from
[J.A. Langa, 2003]

Theorem 6 Let the assumptions (H1)-(H3) hold and
suppose that there exists a 3 > 0 such that for any

q€Q
tli—Too "771(9075(7'_75((1), a1(q)) — o' (t7(q), az(q)))H < 8.
Then

Nim [le'(r (@), a1(9)) = ¢! (77 (@), a2(a))[| < B (21)



Corollary 1 Let there exist a 3 > 0 such that for all
q€ Q,u,veH

Jim |71 (' (77 (@), u) — ' (v (@), v))|| < B
T hen

Jim e (7 (@), u) — o' (77 (@), v) || < B.

This corollary gives the existence of pullback-
asymptotically determining modes for a cocycle.

Now consider cocycles of a special type. Such cocy-
cles are generated by the microwave heating problem.

Let (¢, 7) be a cocycle with phase space
EF = F1 x E> where E; is a Hilbert and E5 is a Banach
space, respectively.

@ has the form (¢1, ¢2), i.e.
p1: Ry X Q X E1 X Ep — FEi,

w2 Ry X Q X E1 X By — Eb.

Let 71 be the projector from FE; onto a finite-
dimensional subspace of E1, 7 be its orthogonal com-
plement.

Let a1,a> 1 Q — E be mappings such that a;(q) € C(q)
for any q € Q.

Modify assumptions (H2) and (H3) so that they hold
for 1 instead of :



(H2*) For any q € Q there exists a § = §(q) € (0,1) such
that for all s > 1,u,v € C(77%(q)) we have

|}772(90%(7'_S(q),u) — 90}(7-_3((1)’”)”}]51 <4(q) |lu -5

(H3*) For any € > 0, t > 0 there exists an L = L(e) € N
such that for any g € Q

_ _ 2

3(@)*" ||t (g, a1(a)) — ¥1 (g, 02(0)||; <&,
and L(eg) — o if e — 0.
Theorem 7 Suppose that

1) The assumptions (H1),(H2*),(H3*) hold for the
cocycle (p,T).

2) The estimate

HQOtQ(T_t(Q)aubuQ) - QDE(T_t(Q)aUlaUQ)HEQ < e ||u2 - UQ”EQ

holds with some constant ¢ > 0 for any t > 0, uy,v1 €
E1, up, vy € Eo.

3) There exists a 8 > 0 such that for any q € Q

tliToo H7r1(goﬁ(7_t(q),a1(q)) — o (t7%(q), ajg(q)))HE1 < A.

T hen

Jim [ (77 (@), a1(0) = ¢ (7 (@) a2(0) |, < 6
(22)



4. Numerical experiments

Consider the family of initial conditions of the form
Yo(0) = 0, vo(x) = psin(wx) and Op(x) = psin(rx),
where p is taken from [0,1]. o(2) = 2+ sin(z).

8(x,1)

o°(x,t)

WP(x,t) W(x,)

Figure 2 Solution component ¢?(x,t).
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