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1 Feedback control systems

Suppose
o i = fly) (1.1)

with a vector function f : R"™ — R" (“parent flow") is given.
Then (1.1) can be written as feedback control system

y=Ay+ B¢ (Cy(t)) , (1.2)
where A, B and C' are arbitrary n x n matrices (B and C regular) and
¢(oc) = B7Yf(C~lo) — AC 1o],0 € R". Consider the more general
system

y = Ay + BE(t) , £(t) = o(Cy(t), &) (1.3)
with the n xn,nxm and [ x m matrices A, B and C and the nonlinearity
¢ which can be smooth, piecewise smooth or a hysteresis function.
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Example 1.1 dry friction, elasto-plastic deformation (Fig. 1) ]

Remark 1.1 (1.3) can also describe an infinite-dimensional system. Sup-
pose Y1 C Yy C Y_ 1 are densely and continuously embedded Hilbert
spaces (rigged Hilbert space structure), = and W are also Hilbert spaces,

AYi—->Y,, B:zZz—=Y,, C:Yi1—-W

are bounded linear operators, ¢ : W — = is a nonlinearity, and the
equation

y=Ay+ Bo(Cy) (1.4)



is the state space realization model for well-posed input-output (measure-
ment) maps.

e ODEcase: Y1 =Yy=Y 1=R", W=R% =Z=R"

e PDE (Boundary control system)

Yy =L%0,1), Y =WY0,1), Y, =Y*, A Y, - Y_,,

(Au,v)) 1 = fol(Au)(ZC)U(QJ)dZE = — fol(auxvx + buv)dr,

Vu,ve Wh(0,1)

==R, B:Z—=Y 4, B=ad(z—1), g:R—R, a>0,b>0numbers

g—?:aum—bu, O<zr<l,
ur(0,7) =0, uy(1,8) = g(w(?t)) , ul-,0) = ug (1.5)

g(w(t)) = Cu(z,t) = [ c(x)u(z, t)dz, ¢ € L*0,1).

e FEvolutionary variational inequalities

Suppose Y7 C Yy C Y_; is a real Hilbert space rigging structure with
A€ L(Y1,Y_1). Assume that = and W are two real Hilbert spaces with
scalar products (-, )=, (-, -)w and norms || - ||=, || - ||lw, respectively.
Introduce the linear continuous operators

B:Z=—=Y,, C:Y1—>W
and define the set-valued map
QY ]R+ x W — 2E

and the map
Y Y] = Ry U{+oo}.

Consider the evolutionary variational inequality (Duvant, Lions, 1976)

(y— Ay — B&,n —y)_11+¢(n) —¥(y) <0, Vn €Y, (1.6)

w(t) = Cy(t), £(t) € p(t, w(t)), y(0) = yo € Yo. (1.7)

Note that in applications ¢ is a material law nonlinearity, 1 is a contact-
type or friction functional and w(t) = C'y(t) is the output of the inequality.



In the contact free case when ¢ = 0 the evolutionary variational inequal-
ity (1.6 - 1.7) is equivalent to an ewvolution equation with a set-valued
nonlinearity ¢ given by

y=Ay+ B¢ in Y., (1.8)

w(t) = Cy(t), £(t) € ot w(t)), y(0) =y € V0. (1.9)

(Likhtarnikov, Yakubovich, 1976; Kantz, Reitmann, 2004)
e Functional differential equations (FDE’s or PDE’s with delay)

g(t) =Y Agy(t+ri)+Bo(Cyp) , =1 <1y < -+ <11 <719 =0, (1.10)
k=0

y(0)=h € H, yo=a € L*([-r,0]; H), H Hilbert space

y(v)  [-7r,0) = H, 4:(0) = y(t+O) a.a. © € [—7,0]

A DA)CH = H, i=0,1,....m, Y= L2([—r,0]. H) x H,
B e L(U,H), U Hilbert space

F : D(F) C Yy — Y given by F({a, h}) = {a&, > 1, Ach(ri) +
By(Ca)}

D(F) ={{a,h} € Yy|a:[-r,0] — H absolutely continuous,
& € L*([~r,0]; H), h = a(0) € D(A)} ODE in the skew-product Y}

2(t) = Az(t) + Bo(Cz(t)) = F(2(t)), 2(0) =2 € Y, (1.11)
({a. 1} {8 kD)o = J7,(a(6), 5(0))1 dO + (. k)
for {oa, b}, {B,k} € Y
H=R": = [" T(s)y(t + s)ds + Ay(t) + Agy(t — ) + bp(o (1)),
o(t) = cy(t) + [2, g"(s)y(t + s)ds, y(0) = h,yo=a,
with b and ¢ n-vectors, g € L*([—r,0]; R"),
I'e L*([—r,0]; R™™"), A; and Ay n x n matrices,

w : R — R s.t. the generalized solutions exist



e Microwave heating process

wtt—mera(Q)wt:O, 0<x <1, t>0\

0; — 0, = o(0)w?, O<z<l, t>0

w(0,t) = fi(t), w(l,t) = fot), O<z<l, t>0 L (112)
0(0,t) =0(1,t) =0, t>0 '
w(x,0) = wy(x), w(z,0) = wi(z), 0<z<l1

0(x,0) = Oy(x). 0<z<1 |

Suppose fi(t) = fo(t) = 0. Then we can write (1.12) formally as the
system

ow
Fri Aw + BE(wy, 0)
with
0 I 0 0 0
A= -A00],B=1[ —-10
—A 00 0 I
and

(&, 0)\ [ (@)
f(vae) _ (62(”;‘9) - O'(Q)U2 .
(Manoranjan, Yin, 2002; Kalinin, Reitmann, Yumaguzin, 2011; Popov,

2011)
e Maxwell-Dirac equation

(=10, +m)Y = gv'y,),
vu = (A = 05)vu = gV, (1.13)
(9“% = 0.

Here the v"’s are the components of the electromagnetic vector field, ¢ is
the Dirac spinor field. The positive definite inner product in spin space is
denoted by 1™ and ¥ denotes 1¥/"4". The +’s are operators in spin space
which satisfy v#9" + yvyu = 2g" (g% =1,g't = —1,¢g" = 0, u # v).
Existence of solutions (Chadam, 1973)

Attractor type: solitary waves (Komech, Komech, 2010)



Some solution conceptions for (1.3)

1) Weak solutions in some Sobolev space

2) Classical solutions for differential inclusions

3) Filippov solutions, i.e. absolutely continuous functions y(-) which
satisfy (1.3) almost everywhere.

H1) For any initial state (1.3) has exactly one Filippov solution on [0, 00).

2 The reconstruction principle and the cone condition

Let v = {y(¢)[t > 0} be a semi-orbit of (1.3), II the projection on some

plane E (Fig. 2).
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Fig. 2

How to choose a projection IT : R® — F = R? such that IT : v — [T is
one-to-one and continuous in A 7

H2) (cone condition) There exist a set S C R™ and an n X n-matrix
P = P* having 2 negative and (n — 2) positive eigenvalues such that for
any two solutions yi(-), y2(+) of (1.3) with y;(t) € S,Vt > 0,71 =1,2, we



have with V (y) = y* Py the inequality

Vn(t) —32(t)) <0, Vi =0 (2.1)
(Smith, 1986, Foias et al, 1988, Robinson, 1993)

Geometrical interpretation of the cone condition for n = 3

Assume V(y) = y* Py is a quadratic form satisfying (2.1) along the so-
lutions of (1.3), K := {y|V(y) < 0} is a 2-dimensional cone, R\ K is
a 1-dimensional cone (Fig.3). Let [ be the direction of the main axis of
R\ K with {*PI > 0, E is the orthogonal to [ plane through the origin,
[T is the orthogonal projection on E.
Suppose that y1(+), y2(+) are two arbitrary distinct solutions of (1.3) in S,
e yi(t) #yelt) VE>0,y1(t),y2(t) € S, Vt>0.From (2.1) we have
V(y(t) —ye(t)) <0, VE>0,ie y(t) —ylt) € K, Vt>0.
Then

Hy1<t) 74 Hyg(t), Vi Z 0. (2.2)

Assume the opposite, i.e. assume that

It follows from (2.3) that II [y1(tg) — y2(tg)] = 0, i.e. the point

y1(to) — ya(to) is projected under IT into 0. But then there exists a k # 0
such that 1 (to) —y2(tg) = kl. Consequently we have V (ki) = k?I* Pl > 0,
a contradiction to the fact that V(y;(¢o) — y2(t9)) < 0.

Y2 (1)

Fig. 3



3 Frequency-domain methods

Suppose A, B and C' are matrices of order n X n,n X m and [ X n,
respectively, F'(z,&) is a Hermitian form on C" x C™ i.e. a quadratic
form which takes only real values. The pair (A, B) is called stabilizable
if there exists an n x m matrix D such that A + BD is Hurwitzian, i.e.
has only eigenvalues with negative real part.

Theorem 3.1 (Frequency theorem; Yakubovich, 1962; Kalman, 1963)
Let the pair (A, B) be stabilizable and det(iwl — A) #0, Vw € R.

a) For the existence of a real symmetric n X n-matriz P satisfying the
Riccati inequality

2Rex"P(Ax + BE) + F(x,€) <0,
VeeC' VEeC” |z|+1€#0 (3.1)

it 15 necessary and sufficient that the frequency-domain condition

F((iwl — A)T'BE,€) <0,
VEECC™E#40 YweR (3.2)

is satisfied.
b) A matric P = P* satisfying (5.1) can be computed in a finite number
of steps.

Consider the system

y=Ay+ Bo(Cy(t)) , (3.3)
where A, B and C' are matrices of order n X n,n x 1 and 1 X n, re-
spectively. Introduce the transfer function x(z) = C(2I — A)7'B for
z € C:det(z] —A) #0.
¢ : R — R satisfies the following condition:



(H3) There exist parameters p; < 0 < o such that

(o — 02)” < [plor) — ¢(o2)](01 — 02) < po(or — 02)°
Voi,00 € R (34)

Remark 3.1 If ¢ is C! the condition (3.4) can be written in the following
way:

(H3)" There exist parameters p; < 0 < o such that

< @(0) <pg, VoeR (3.4

[l

Theorem 3.2 Suppose that for ¢ from (3.3) the condition (H3) is sat-
isfied and there exists a X > 0 such that the following holds:
1) The pair (A+ M\, B) is stabilizable ;
2) The matriz A+ X has exactly two eigenvalues with
positive real part and (n — 2) with negative real part; }
5) Re [14pix(iw — A)] [T+ pax(iw—N)]" > 0, Vw € R;
Then there exists an n X n-matric P = P* having 2 negative and (n — 2)
positive ergenvalues, and a number € > 0 such that with the function
V(y) = y* Py the inequality

iv(?ﬂ(t) — () + AV (51 (t) = 12(t) — elyi(t) — w2(t)*, V>0

dt
(3.5)

(Gap

condition)

(Squeezing property)
is satisfied for any two solutions y1(+),yo(+) of (3.3).



Geometrical interpretation of the frequency-domain condition
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Fig. 4
4 Amenable solutions and essential modes

Definition 4.1 (R. A. Smith, 1987) Suppose A > 0 is a number. A
solution y(-) of (1.3) is called amenable if there exists a number T € R
such that y(t) € S, Vt < 7, and [T e*M|y(t)]*dt < +oo.

Remark 4.1 If (1.3) has a compact attractor then all solutions inside
the attractor are amenable. []

Theorem 4.1 Suppose that the conditions of Theorem 3.2 are satisfied
with a parameter A > 0 and P = P* is the n X n matrix satisfying

2y*P[(A+ M)y + BY] + (u2Cy — ¥) (¢ — i Cy) < — e[ |y)* + [¢]*]
VyeR" VY eR.

and having 2 negative and (n — 2) positive eigenvalues.



Choose a matriz () = Q* of order n x n such that
= )
—1 0
Q'PQ = 1

0

\ ey

and define the linear map 11 : R" — R? by Iy :== u where () = Q" 'y
with u € R?,
v € R"2 Then if A is the set of amenable solution of (3.8) the map

M:ATA (4.1)

s a homeomorphism, i.e. one-to-one and bicontinuous.

Definition 4.2 (0. Ladyzhenskaya, 1987) Suppose that (1.4) has in the
(infinite-dimensional) phase-space Yy an attractor A and a finite-dimensional
projector 11 with the following property: For any two orbits v1, v of the
attractor A the condition 11~ = 1~y implies v = 9. Then we say that
the number of essential or determining modes of (1.4) for A is finite.

Corollary 4.1 Suppose that the conditions of Theorem 3.2 are satisfied
and (3.3) has a compact attractor A. Then the number of essential modes
for A is two.

Remark 4.2 In many cases in the system y = Ay + Bo(Cy) (1.4) we
have a symmetric A = A* : Y7 — Y_;. If the embedding Y7 C Y_; is
completely continuous then the operator A has a system of eigenfunc-
tions (modes) {w;} associated to eigenvalues {\;} by Aw; = \jw;, w; €
Yi, i < Aig1, i — 400, (wj, wi) = 5;“ such that {w;} is a basis of Y7,
i.e. any element y can be written as y = Zijj, Zy? < Q.

Then ITy = (y1,y2) € R? or, more general, [Ty = (y1,...,y) € Rlis a
finite-dimensional projection. Physically this means that the total energy
of an orbit is dominated by the energy of the first i modes. []



5 Lipschitz manifolds and the extension procedure

Consider (3.3) under the assumptions of Theorem 4.1 and let

hTlA— A (5.1)

be the inverse map of IT : A — II.A, (4.1), where A is again the set of
amenable solutions.
It follows from

2[py — po|* > |Q Hp1 — p2)|* > [T py — Mol vV p1,p2 € M1, V2.
that

2uy — uol® > [Q 7 (h(ur) — h(u2))]* > us — uof
Vup,up € ITA. (5.2)

If y(-) is an amenable solution of (3.3) then u(t) := [T y(t) is the solution
of the
2-dimensional reduced or observation ODE

=11 f(h = Ay + Bo(Cly)). 5.3

w=11f(h(u)  (f(y) = Ay + Bo(Cy)) (5.3)

=:g(u)
The reduced vector field g is defined only on the closed set 1. A C B =
R?, since h is defined only on IT.4. Can we extend h to a Lipschitz
continuous map i
h:E~R* = R"(Yy)?

Assume for a moment that this is possible. Then it holds:

1) g :=TI(f(h)) is a Lipschitz vector field on £ = R* if f is Lipschitz :
g=1Ilofoh.

It follows that all solutions of (3.2) exist and are unique. The observation
ODE (5.2) can be used for the reconstruction of the set A of (3.3).



2) The set A of amenable solutions of (3.3) lies in the set

M = {y e R"y = H(u), u € R?} .
(Yo) (R™) (5.4)

Since h is Lipschitz the set (5.4) is a 2-dimensional (m-dimensional) Lip-
schitz manifold. If A is the global attractor the set M attracts all orbits
of (3.3) from R"(Yp). In this case M is called the inertial manifold of
(3.3) (Foias et al, 1988, Robinson, 1993) .

Theorem 5.1 ( Stein’s extension theorem Stein, 1970)

Let X be a closed subset of R™, H(=Yy) be a Hilbert space, and h : X —
H be a continuous function.

Then there is a continuous extension h : R™ — H and there exists a
K = K(m) such that if |h(z) — h(y)| < Clx —y|,Va,y € X, then
\h(z) — h(y) < KC|z —y|,Vx,y € R™.

Corollary 5.1 Under the conditions of Theorem 4.1 the reduced vector
field (5.2) can be extended to a Lipschitz vector field in E = R% Any
amenable solution y of the infinite-dimensional vector field

iy = Ay + B¢ in the phase space Yy can be represented as y = h(u(t)),
where u(t) is the unique solution of the reduced equation (5.2) with initial
state u(0) = [T y(0).

6 Constructing a reduced system from measurements

y=fy) (6.1)

is a given (unknown) dissipative system in R" with attractor A.

Suppose

Step 1. Choice of the linear part

Choose a number A > 0 and matrices A, B and C of order n x n,n x 1
and 1 x n, respectively, such that (A + A, B) is stabilizable, and A+ A1
has 2(m) eigenvalues with positive real part and n — 2 eigenvalues with
negative real part.



Step 2: Reconstruction of the class of nonlinearities

Calculate on [0, 7] the linear semigroup S(t) = e with A from Step 1.
Take an € < 0 (tolerance), a natural number N and observe near the
attractor the solutions y;(+),7 = 1,2,..., N, of (6.1) on [0,T]. Find for
any ¢ = 1,2,..., N asolution ¢; € L*>(0,T;R") of the linear inequality

t
sup [Cyi(t) — CS(Hyi(0) / CS(t— s)Bei(s)ds| < 2. (6.2)
t€[0,T 0
It follows that ¢;(t) &~ ¢(Cy;(t)) in the sense of L*(0,T), where
Ui(t) = Ay; + Bo(Cy,(t)) on [0, T1.
Determine two constants —oo < iy < g < +00 (g < 400 if g = —00
and pp > —o0 if pg = 4+00) such that
ulClyi(t) — y; (W) < [6ilt) = ¢5(1)] C [yi(t) — y;(1)]
< w[Clylt) =y, (), i,j=1,...,N te[0,T]. (6.3)

Step 3. Graphic test of the frequency-domain / gap condition
Compute the frequency-domain characteristic

x(iw — A) = C((iw — N\)I — A)"!'B and compare with the circle
Clpy, po] with uy < po from Step 2 (Fig. 5).

Fig. 5



If there is no intersection between y(iw — A) and Clu1, pe] go to Step 4.
In other case change A, B, C' or m and begin again with Step 1. Step 4:
Calculation of a homeomorphism II: A — 1A

Find with A, B, C from Step 1 and p; < p9 from Step 3 an n X n matrix
P = P* of the matrix inequality

2y"P[(A+ Ay + BY] + (1Cy — ¢) (¢ — mCy) <0,
VyeR", VY e R, Jy|+ [¢] #£0.  (6.4)

Such a solution exists by the frequency theorem and is computable in a
finite number of steps. Any solution P = P* of (6.3) has 2 negative and
n — 2 positive eigenvalues. Define a matrix () = QQ* through

(- )
—1 0
Q*PQ = +1 . Then the projection is II : R" —
0

R2 \ +1)

defined by [Ty = u,y € R",u € R, v € R" % sth. (!) =Q'y.
It follows from Theorem 4.1 that of A is the amenable set of (6.1) then
II: A— IIA is a homeomorphism.

Step 5. Determination of a reduced ODE for the full equation

Let 1T : A — IIA be the homeomorphism from Step 4. Determine a

reduced 2-dimensional ODE u = IT f(h(u)) from the observations I1y;(¢),
N——

g(u)

where y;(t) are arbitrary solutions of (6.1) near the attractor and use
constructively the extension theorem of Stein to extend this vector field
from the closed set IIA C E = R? to a Lipschitz vector field on the

whole F.



7 When is a given linear projection a homeomorphism on the
attractor?

Suppose

y=r() (7.1)
is on ODE in R™. A is the set of amenable solutions and I : R* — RF
is a given linear projection. Under what conditions is II : A — IIA a
homeomorphism?

Write (7.1) again in the form

y=Ay+ Bo(Ily), (7.2)

where A and B are n X n and n X m matrices, and B¢ : R” — R" is
defined by B¢ (Ily) := f(y)— Ay. Assume that f(0) = 0 and the solutions
of (7.1) exist on R, and are unique. Let K C R" be an invariant and
absorving

cone for (7.2) having the property
Kn{yeR"|lly=0} ={0}. (7.3)
If (7.3) is satisfied then IT : A — I1.A is a homeomorphism.

(H3)” There exists a k X m matrix M such that

0 < (I(y1 — y2))" M|p(Ily1) — ¢(Tlya)] ,  Yy1,y2 € R™.

Define the Hermitian form Fe(y, &) := Re (y* [I*ME),y € C*, £ € C™,
and the transfer matrix y(iw) = (iwl — A)"'B.

Theorem 7.1 Suppose that (H3)” is satisfied and there exists a § > 0
such that the following holds:

1) The pair (A+ M, B) is stabilizable ;

2) The matriz A+ M has k eigenvalues with positive real part and n—k
with negative real part ;

3) Re Fe(x(iw — M), €) <0, VE€C™E#0, VweR;
4) B ITME>0, YEER™.



Then there exists a symmetric n X n matriz P having k negative and
n — k positive eigenvalues such that the following holds:

a) The k-dimensional cone K = {y € R"|y*Py < 0} is positively
invariant for all solutions of (7.1) ;

b) KN{y e R"Ily =0} = {0} ;

¢) K absorbs A and, consequently, 11 : A — IIA C R* is a homeomor-
phism, .

(Kantz, Reitmann, 2004)

8 Dynamical systems on Banach manifolds

Let M be an nfinite-dimensional Banach manifold and F': M — T M
be an smooth vector field on M.
Let us consider the equation

= F(u)

and the dynamical system on M: ({¢'}her, M), ©'(ug) = ul(t, up),
u(0, ug) = uyp.

Let ug € M be a given point and {p'(ug) }1>0 be the associated trajectory
A map h : M — R is called observation function

Let T" be the interval between the measurements. Then we get the se-
quence zp = h(ug), 21 = h(o! (ug)), ...,z = h(o" (ug), . ..

An embedding function is a map

e p(w) = (h(u), h(e" (W), ..., A" (W), u e M
(Takens, 1981)

Theorem 8.1 [Takens, 1981| Let M be a compact manifold of dimension
n. Let k € N, such that k > 2n + 1. Then the set (p,h) of pairs for

which the embedding function ®, 5, is a topological embedding is open and
dense in the space Diff (M) x C"(M,R) forr > 1.



Theorem 8.2 |Robinson, 2005| Let H be a Hilbert space and A be a
compact set whose fractal dimension satisfies dims(A) < d, d € N, and
which has thickness 7. Choose k > (24 7)d, and suppose further that A
is an invariant set for a Lipschitz map @ H — H, such that

o the set I' of points in A such that p(x) = x satisfies dims(I') < 1/2,
and

o A contains no periodic orbits of ¢ of period 2, ... k.

Then a prevalent set of Lipschitz maps h : H — R make the embedding
Py H — R”* one-to-one on A.

Theorem 8.3 [Okon, 2002] Let M be a C* - manifold with one chart
x: M — U where U C H 1s bounded and convex, H is a Banach space.
Let p, be the metric which 1s induced by the chart x and let K C M be
a compact with dimy(K) < d, N >2d, and a < (N —2d)/(N(1 +d))
Then the set of all ¢ € CF(M,RN) such that

AC > 0 Yo,w € K : ClY(v) — Y(w)|* < pe(v,w)

is prevalent in Cf(M,RY).

InC(e)

Ine

Let dimg,,(X) = lim._y
is the correlation integral

be the correlation dimension. Here C(g)

where z; are vectors from X and O(xz) is the Heaviside function:

L,z >0
@(x){0x<0.
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Fig. 6 The estimation of the correlation dimension for the Microwave
heating process (1.12)
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Fig. 9 Solution of Maxwell-Dirac equation
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Fig. 11 The estimation of the correlation dimension for the
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Proof of Theorem 3.2 Suppose y1(-), y2(+) are two arbitrary solutions
of (3.3). Then y := y; — y5 is a solution of

y = Ay + By with i(t) := ¢(01(t)) — d(oa(1)),
Uz<t) = Cyz(t)az =1,2.
By assumption (H3) we have with ¢ = o1 — 09 the inequality
po(t)? < (t)o(t) < poo(t)?, ¥t >0 . (8.1)

Because of 1) and 3) Theorem 3.1 is applicable with the Hermitian form
F(y,&) = Re[(u2Cy —&)(€ — 1 Cy)*| (Fig. 4). It follows that there exist

an n X n-matrix
P = P* and a number € > 0 such that

2y*P[(A+ M)y + BY] + (1Cy — ) (¢ — 1Cy) < — e[|yl + | ]
VyeR", Vi eR.

For 1) = 0 we get from (8.2) the inequality &2
2y P(A+ M)y — pipa(Cy)? < —ely*, Vy € R™. (8.3)

Since 19 < 0 inequality (8.3) implies that
Y PA+MN)y+y (A+AN)"Py<0,VyeR" y#0. (8.4)

From (8.4) it follows by Lyapunov’s theorem that the matrix P has ex-
actly 2 negative and (n — 2) positive eigenvalues, since A + Al has 2
eigenvalues with positive real part and (n — 2) eigenvalues with negative
real part.

Putting in (8.2) y = y1 — v2, ¥ = ¢(Cy1) — ¢(Cys) and using the fact
that

120 (y1=12) = (0(Cy1) =9 (C))] [((Cy1) =9 (Cya) ) =1 Cly1—12)] = 0.,
we derive from (8.2) the inequality

d

av(m(t)—y2(t))+2)\v(3/1(t)—3/2(t)) < —ely(t)—(t)]?, YE>0.




Proof of Theorem 8.3 (See also Smith,1986 4 [e*MV (y;—ys)] < —2ee*|y; —
|*, Vi < 7, if y1,y2 € S. Integration on [©, 7] gives

eV (y1(1) — ya(7)) < POV (11(0) — 12(0)) — 2¢ /@T ey (t) — ya(t)]dt.
(85)

Since eM|yy(t)], eM|y2(t)| are in L?(—oo, 7) the function e|y; — 1ol is
also in L*(—o0, 7).

It follows that there exists a sequence of times ©, — —o0 as v — o0
with

1y1(0,)—12(0,)]e*®” — 0. Putting in (8.5) © = 6, and assuming v — o0
we get

T

eV (y1(1) — yo(7)) < —25/ elyi(t) —pe(t)Pdt < 0. (8.6)

Take a regular n X n-matrix ) = Q* such that
[ -1 )
—1 0
Q*PQ = +1 and put y = Q(z) with u € R%, v €
0

s \ +1 )

My :=u,Vy € R". Clearly that |[[Ty|* = |u|% Since Q 'y = (") we have
Q7 y* = [ul*+ v andV (y) = y* Py = (u*, v")Q*PQ(;) = —[ul*+|v]*
It follows that

V(y) +2Tyl* = —[ul* + o + 2[ul* = [u]* + |v]
= Q7 'yl > y]*, VyeR".
Consider two arbitrary amenable solutions yy, 4o of (8.6). It follows now

that
V(yi(t) —y2(t) <0, ¥Vt >0, and

2T (y2(7) = ()P > [Q (i (1) = (7)) > [T (31(7) — w2(7)) I .
(8.7)



If h and k are arbitrary constants the amenable solutions y1(t —h), y2(t —
k) can replace yy, 3o in (8.7). Thus, if 71, 7 are amenable orbits of ¥y, ys
then

2[py — M po|* > 1Q H(pr —p2)° = [pr —pa* V1, p2 € 71,72

(8.8)
It follows now that II : A — II A is a homeomorphism of A onto I A.
N



