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1 Basic notation

Suppose that Yj is a real Hilbert space with (-,-)o and || - ||o as scalar
product resp. norm.

Suppose also that A: D(A) C Yy — Yp is an unbounded densely defined
linear operator.

The Hilbert space Y; is defined as D(A) equipped with the scalar product

(y,m1 = (81 = Ay, (Bl = An)y »  y,n€D(A), (1)

where 5 € p(A) NR (p(A) the resolvent set of A) is an arbitrary but fixed
number.
The Hilbert space Y_1 is by definition the completion of Yy with respect to
the norm ||z||_1 := ||(B/ — A)~z|lo. Thus we have the dense and
continuous imbeddings

YiC Yo C Y_1 (2)

which is called Hilbert space rigging structure. In this triple, Y is the pivot
space, Y1 is the interpolation space, and Y_; is the extrapolation space
(Triebel, 1978).
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The “scalar product” (-,-)—1,1 on Y_; x Y; is the unique extension by
continuity of the scalar product (-, -)o defined on Yy X Yj.

If T > 0is an arbitrary number we define the norm for Bochner measurable
functions in L?(0, T;Y;), j = 1,0, —1, through

= v dt)m | 3)

Let Wr be the space of functions y(-) € L2(0, T; Y1) for which
y(-) € L%(0, T; Y_1) equipped with the norm

lyOlwr = (lly ()

Iy ()l

%,1 +1ly ()l %,—1)1/2' (4)
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2 Evolutionary variational gl

Suppose Y7 C Yy C Y_; is a real Hilbert space rigging structure with
A€ L(Y1,Y_1). Assume that = and W are two real Hilbert spaces with

scalar products (+,-)=, (,-)w and norms || - ||z, || - [|w. respectively.
Introduce the linear continuous operators
B:E—)Y_l, C:Y_1—>Z= (5)
and define the set-valued map
o W — 2= (6)
and the map
YY1 = Ry U{+o0}. (7)

Note that in applications o is a material law nonlinearity, 1) is a
contact-type or friction functional and w(t) = Cy(t) is the input of the
nonlinearity.

(v —Ay =B&En—y)a +9(n) —9(y) 20, vnevi,  (8)

w(t) = Cy(t), &(t) € p(w(t)),  y(0)=y0 € Yo. (9)
W



Remark 1

In the contact free case when ) = 0 the evolutionary variational inequality
(8), (9) is equivalent to an evolution equation with a set-valued
nonlinearity ¢ given by

y = Ay+BE in Y., (8)
w(t) = Cy(t),&(t) € p(w(t)), y(0)=yo € Yo. (9) )
Definition 1

A function y(-) € Wr N C(0, T; Yp), is said to be a solution of (8), (9) on
(0, T) if there exists a function &£(-) € L2(0, T; =) such that for a.a.

T
t € (0, T) the inequality (8), (9) is satisfied and [ ¢ (y(t))dt < 4+o0. The
0

pair {y(-),&(-)} is called a response of (8), (9); &(-) is an associated
selection.
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2 Evolutionary variational inequalities
Suppose that F, G and H are quadratic forms on Y; x =. The class

N(F, G)(N(F, G, H)) of nonlinearities for (8), (9) consists of all maps (6)
such that the condition a) (conditions a) and b)) is (are) satisfied:

a) For any T > 0 and any two functions y(-) € L?(0, T; Y1) and
£(-) € L2(0, T; =) with
§(t) € p(Cy(t)), aa. t €0, T], (10)
it follows that
F(y(t),&(t)) 20, a.a. t €0, T], (11)

and there exists a continuous function ® : Y; — R (generalized potential)
and numbers A\ > 0 and v > 0 such that

t

[ 60).60) dr = Ho0e) - ols)] + A [ oyt (12

S
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for all

and

o(y) 27llylg. vy e Yo. (13)
b) For any T > 0 and any two pairs of functions
y1(-),y2(:) € 2(0, T; Y1) and  &1(:),&(-) € L2(0, T; =)
with &i(t) € o(Cyi(t), i=1,2, aa. tel0,T],
it follows that H(yi(t) — y2(t),&i(t) — &(t)) >0, aa. te[0,T].

(A1) For fixed linear operators A, B, C, fixed function (7), arbitrary
Yo €Yy, T>0and peN(F,G H) (¢ € N(F,G)) there exists a
response {y(-),£(-)} of (8), (9).
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Example 1
Suppose that Q C R” is a domain with smooth boundary ' = 9,
h:T — R is a given scalar function (“outer pressure”) and u(x,t) (“ inner
pressure”) is a solution of
Ou

E =Au in Qx R+ (14)

subject to the boundary conditions

ou
u=nh OanRJ’_ = %20, (15)
ou
h — = 1
u>h onlT xRy = o 0 (16)

and the initial condition

u(-,0) = up . (17)
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Example 1 (continued)

The system (14) — (17) describes the transfer problem of fluid acrossing a
semi-permeable membrane (Lions, 1969).
Instead of (15) — (16) we consider the (nonlinear) boundary condition

Ou

o 2 >g on xRy, (18)

where g : R — R is a given function.
In order to get a representation of (14) — (18) in the form of a variational
inequality (8), (9) we introduce the spaces

Yo = L%(Q),
Yi = WH(Q)={ve L2(Q) —€l?(Q), i=1,2,...,n} and
== WY22(5Q).
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Example 1 (continued)
An operator A € L(Y1, Y_1) is defined by

(Au,v)_11 = — /Zg)l:g: x, VYu,veYr. (19)

The operator B € L(=, Y_1) is given by

(BE.y)—11 = — /8 _eyds, VEES, Wyen, (20)

the nonlinear map ¢ : Y7 — = is given by
ply(x)) =g )x) on T, (21)

and the “contact functional” ¢ : Y7 — Ry U {400} is defined by
. 0 ifn(x)>h(x)on'l,
V() = { +00 in other cases.
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Example 1 (continued)

Thus the transfer problem of fluid (14) — (18) can be considered as
evolutionary variational inequality

(y—Ay =B, n—y)-11+¢(n) —¢(y) >0, VneV, (23)

§(t) = w(x(t)), y(0)=y € Yo. (24)
Let us describe the class N'(F, G) for (23), (24). We assume that the
nonlinearity ¢ from (21) has the following two properties:
(H1) Jup >0 Vy,yp €Y1
0 < (Bp(y1) — Be(y2) y1 — y2)-11 < pollya — y2llf . (25)

(H2) There exist a Fréchet differentiable map ¢ : Yy — R and a number
A > 0 such that with the Fréchet derivative ¢’ € L(Yo,R) the inequality

(e(y),mh > ¢'(y)n +A®(n), Ynev is satisfied. (26)

v
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Example 1 (continued)

It is clear that (25) and (26) can be considered as a monotonicity condition
and a potential-type condition, respectively. Using (25) we can introduce
the quadratic form

F(y,f) = MO”y”% - (Bgay)—l,l ) (yag) S Yl X E? (27)

which satisfies (11). The inequality (26) can be used to define the
quadratic form

G(y,8) == (G Ay, )=+ (G2BE,§)= on Y1 x = (28)

with Gj: Y_1 — = (i =1,2). It is easy to see that the form G from (28)
and the generalized potential ® from (26) satisfy the inequality (12) .
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3 Determining observations

a) Observations that are determining for the dissipativity

Suppose S is a real Hilbert space (observation space), M :Y; — Sis a
given linear bounded operator (observation operator),
P e L(Y-1,Ys)NL(Yo, Y1),P = P*in Yp, is also given such that the
following conditions are satisfied.

1) Vily) :=%(y,Py)o>0 , Vye€ Yo;

2) V(y) = Va(y) + 3 ®(y) = const- yl§, Vye Yo;

3) There exist numbers A > 0 and p > 0 such that for an arbitrary

solution y(-) of (8), (9) the function m(t) := V(y(t)) satisfies

m(t)+2Am(t)+4(y (£) = (=Py(t)+y(t)) < ul|My(t)]5, a-a. f(Z ())-
29
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Then the observation

a(t) := plMy(t)]3 (30)
is determining for the dissipativity with domain D of (8), (9), i.e., the
property

t+1
/ IMy(7)|2 dr =0 for t— 400
t

implies that

limsupm(t) < C and,
t——+o00

consequently, (8), (9) is (point) dissipative with domain of dissipativity

2C
D={yeve:lyl3< 7}. (31)
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b) Observations that are determining for the complete deviation of arbitrary
two solutions

Suppose M € L£(Y1,S) is given as in a). Suppose also that there exist an
operator P; € ﬁ(y_l, Yo) ﬂﬁ(Yo, Yl), P = Pik in Yy , numbers
A1 > 0,1 > 0,6; >0 and p; > 0 such that for arbitrary two solutions

yi(+),y2(-) of (8), (9) the function

m(t) = (1(t) = »2(t), PL(n(8) = ya(1)))

0

satisfies for a.a. t > 0 the inequality

i (t) + 2 m(t) + ¢y (8)) — b (t) = Prly2(t) — (1))
= (y2(t) + Pr(y(t) = y2(2))) + ¥(y2(t)) (32)
+orflem (ya(t) — ya()I§ < My (t) — y2(0))II5 -
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Then the observation o1(t) = w1 ||M(y1(t) — y2(t))||2 is determining for
the complete deviation y;(t) — y»(t), i.e., the property

t+1
/t IMOa(r) = yo(F)) |2 dr — 0 for t— 400 (33)

implies that for a.a. t >0

lyn(8) = y2(8)lI < cre®**[ly2(0) — y2(0)1[5 . (34)

where ¢; > 0 is a certain constant not depending on the solutions.
The inequality (34) follows from (32) since

/000 le™* (ya(t) — ya(£))II3 dt < +oo. (35)
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3 Determining observations

c) Observations that are determining for the convergence in a subspace of
codimension n

Suppose M € L(Y1,S) is given as in a). Suppose also that there exist an
operator

P> € L(Y_1, Yo) N L(Yo, Y1), P> = P; in Yq, a natural number n, numbers
A2 >0,

az >0, 62 > 0 and p > 0 such that for arbitrary two solutions y1(-), y2(-)
of (8), (9) the function

ma(t) == (y1(t)) — y2(t) . P2(y1(t) — y2(t)))o
satisfies for a.a. t > 0 the inequality

() + 2 Aama(t) + (v (£)) — ¥(ya(t) — Pa(ya(t)
—h(v2(t) + P2(y1(t) — y2(t))) + ¥(y2(t))
+d2]le” 2t (1 = ma) (y1(t) — y2())§ < p2l|My1(t) — ya(£)I5 - (36)
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Then the observation oo (t) := o ||M(y1(t) — y2(t))||% is determining for
the convergence in a subspace of Y1 of codimension n, i.e., the property

t+1
/t IMOa(7) = yo(F)) |2 dr — 0 for t— 400 (37)

implies that for a.a. t >0

(L = 7)1 (8) = y2 (D)5 < 262" |1y2(0) — v2(0)lI.  (38)

where ¢, > 0 is a certain constant not depending on the solutions. Again
the inequality (38) follows from (36) since

/Ooo le®(va(£) — ya(£)) 1§ dt < +o0. (39)
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Remark 2

Determining observations (also called “determining functionals”) are
introduced by Foias and Prodi, 1967, Ladyzhenskaya, 1975, Foias and
Temam, 1984, Chueshov, 1996, 1999. Inverse problems for variational
inequalities (parameter identification problems) are considered by Hoffmann
and Sprekels, 1986, Maksimov, 1992 and other authors.

Theorem 1

Suppose that for the variational inequality (8), (9) there exist observations
that are determining for the dissipativity with domain D, determining for
the complete deviation and determining for the convergence in a subspace
of codimension n, respectively. Then any positively invariant for (8), (9)
compact set in D has a finite fractal dimension.
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Idea of proof: The inequalities (29), (34) and (38) are the essential
sufficient parts for the use of Ladyzhenskaya's theorem (see also Chuesov's
version of this theorem in Chueshov, 1999).

Theorem 2 (Ladyzhenskaya, 1975)

Suppose K is a compact set in the Hilbert space (Y, | -||) and
¢ K — ¢(K) is a continuous map with K C ¢ (K) and such that

lo(y)=oml < lly=nll, [I(A=ma)(@(y)=om)I < gqlly—nll, YVy,n e Y.

Here / > 0, 0 < g < 1 are constants, 7, is the orthoprojector in Y on a
subspace of dimension n.

2022 (l 2

-1
Then dimpK <n In I Lo q2) (v is an absolute constant).

o
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(A2) There exists a number A > 0 such that for any T > 0 and any
f € 1%(0, T; Y_1) the problem
y=(A+ M)y +1(t), y(0) = yo (40)

is well-posed, i.e., for arbitrary yo € Yo, f(+) € L?(0, T; Y_1) there exists an
unique solution y(-) € Wr satisfying (40) in the sense

(}./777)—1,1 - ((A+)‘I)y777)—1,1 +(f(t) 777)—1,1 ) VU € Y17 a.a. te [07 T]7

and depending continuously on the initial data, i.e., (41)
YOIy, < aliyll§ + ellfC)I5,-1 (42)

where ¢; > 0 and ¢, > 0 are some constants. Furthermore, any solution of
y=(A+A)y, y(0)=x (43)

is exponentially decreasing for t — 400 , i.e., there exist constants ¢c3 > 0

and € > 0 such that o
ly()llo < cse™[lyollo, t>0. (44)
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(A3) There exists a number A\ > 0 such that the operator
A+ M € L(Y1,Y-1) is regular, i.e., for any T > 0,y € Y1,zr € Y7 and
f € L2(0, T; Yp) the solutions of the direct problem

y=(A+X)y+1(t), y(0)=y, aa.tel0,T], (45)

and of the dual problem
z=—(A+ X)) z+1(t), z(0)=2zr, aa. tel0,T], (46)

are strongly continuous in t in the norm of Y;.

The elements of the complexification Y of the real Hilbert space Y{ can
be written as x + iy with x,y € Yp, and the inner product of Ys will be
denoted by (-,)ys. The complexification of the other spaces are defined in
a similar way.
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For the linear operator A: Y7 — Y_; we denote by A€ the linear operator
A€ Y — Y€, defined by A°(x + iy) = Ax + iAy. Again, the
complexification of the other linear operators which will appear below, is
defined in a similar way. Consider now the complexification of the quadratic
form F (similarly of G). Suppose that

F(y,§) = (Fiy,y)-11 + 2(F2y, &)= + (F&,6)= (47)

for (y,€) € Y1 x =, where F1 = Ff € L(Y1,Y_1),F € L(Y1,=) and
Fs=F; € L(=,=2).

The complexification of the quadratic form (47) is the Hermitian form F€¢
defined on Yy x =€ by

Fc(yvf) = (Flcyvy)Yfl,Yf + 2R'e(F2Cy7€)EC + (F?;Cfvf)zc . (48)
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(A4) (Frequency-domain condition)
There exist numbers A\ > 0 and p > 0 such that the following two
properties hold:

a) F(y,€) + G(y.€) — u| My |3 <0 (49)

V(y,§) € Yf xZ=¢:JweR with jwy = (A"+ Ay + B¢;

b) The functional J(y(-),&(7)) = (50)
Jo IFE(y(r),&(7)) + Gy (), &(T)) — ulIMCy(r)l[5c] dT

is bounded from above on the set

Myy = {y(€() 7 = (AT + XYy + B,

y(0) =yo,y(:) e Wy, &() € L2(0,oo;EC)}
for any yp € Y, i.e., for any such yg there exists a y(yo) € R such that

J(y(-):€()) <(yo0)-
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4
d

Theorem 3

Suppose that there exist numbers A > 0 and § > 0 such that the
assumptions (A1) - (A4) are satisfied for (6) - (9) with ¢ € N(F, G) and
an observation given by (30). Then the observation (30) is determining for
the dissipativity of (8), (9) with domain D given by (31).

Idea of the proof: We try to find an operator

P=P*e L(Y_1,Yo)NL(Yo, Y1) with (y,Py)o >0, Vy€ Yy, and
numbers A > 0, u > 0 such that for any solution y(-) of (8), (9) and their
associated generalized potential ® from condition (12) the integrated
inequality (29) is true on any time interval 0 < s < ¢, i.e.,

m(t)—m(s)+2)\/st m(T)dT+/Stp(T)dTg/stg(T)dT. (51)
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In (51) we have introduced the functions

m(t) = 3 (1), PY(D)y + 50((1)). (52)
p(t) == (v (1)) — »(y(t) — Py(t)), (53)

and
£(t) = — nl[My(1) 3. (54)

In order to guarantee the inequality (51) we choose an operator
P =P*e L(Y_1, Yo) N L(Yo, Y1) and numbers A > 0, u > 0 such that

(—(A+AV=BC, Pv)_11 = F(v,()+G(v, )~ u|Mv|5, ¥y € Y1, V¢ € =.
(55)
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The existence of such a P with (y,Py)o >0, Vy € Yy, follows due to
the assumptions (A2) — (A4) from the infinite-dimensional version of the
Kalman-Yakubovich-Popov Lemma (Frequency Theorem (Brusin, 1976,
Likhtarnikov, Yakubovich, 1976). From (8), (9) it follows with v := y(t)
and ¢ := ¢(t) that

((£), Py(t)) 1.1 + Ay (), Py(t))o — ((A+ Al)y(t)

+ BE(t), Py(t))-11+ p(t) <0, a.a. t>0. (56)

Using the estimate (55) we derive from (56) the inequality

(), Py(£))—11 + Aly(t), Py(£))o + F(y(t),£(t)) + G (y(¢),£(t))
—ul|My(t)||S +p(t) <0, aa.t>0. (57)
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Integration of (57) on the time interval 0 < s < t gives

S8, PY (D)o — S (v(s), PY())o + A / (y(7). Py(r))odr

2
/ Fly(7), &(r))dr + / G(y(r), £(7))dr + / p(7)d7
<u / IMv(e)2dr (58)
From the inequalities (11) and (12) it follows that
| For).ear = 0 (59)

and

[ 661> Ho(e) - o) + [ @brar.
0<s<t. (60)
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Taking into account now (58) — (60) we obtain that
S0, Py (D)o + %cb(y(r)) S 0(). Py()o — 50(x(5)) (61)
12 / 7). Py())y — 5®(y() | o7 + / o(r)dr
<p / My ()2 dr

Now, we conclude that (61) implies the inequality (51) with the functions
m(-), p(-) and g(-) defined by (52) — (54) .
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Remark 2

The frequency-domain condition (A4) depends on imbedding properties of
the Sobolev spaces under consideration. Assume, for example, that G =0

and
F(y,&) = Bollylls = Aullyllz, (v,€) € Yo x =, (62)

where [y and B; are certain real constants.
In order to verify (49) we introduce the frequency-domain characteristic

x(iw) = (iwl® — A§)"1B¢ (63)

forw e Rs. t. iw € p(AS), where AS := A° + A€,
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Remark 2 (continued)
It follows that the frequency-domain condition (49) is satisfied if

Bollx(iw)élls — Bullx(iw)é|3e — M x(iw)€|5e <0,
VEE=, YweR: iwep(AS). (64)

Suppose now that from the imbedding Y C Y5 C Y<; and the properties
of the observation operator M we have the a priori estimate

IVIBs < cullviBe + emelMEVIZ, W e YE, (65)
where ¢; > 0 and ¢, > 0 are certain constants and

eme = eme(Y7, Yo ) i=sup{[[wllyg : w € Y{, Mw = 0s¢, [|w]|ys <1}
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Remark 2 (continued)

is the completeness defect of the observation operator M€ with respect to
the imbedding Y C Y{.

It follows from (65) that the frequency-domain condition (64) is satisfied if
Bo crllx(iw)€ll3e = Bulx(iw)l¥e + Bocacme M X(iw)E]l5e —
plIMEx(iw)é||2. <0 VEE=S, VweR: iwep(Af). (67)

For (67) it is sufficient that

Poa—pP1 <0 and Bocreye —0<0. (68)

v
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Remark 2 (continued)

We see that if Syc; — $1 < 0 the second condition of (68) is always
satisfied if the completeness defect of the observation operator is small. In
this case, assuming that the other assumptions for the Theorem 5.1 are
also satisfied, it follows that the observation o(t) = My(t) is determining
for the dissipativity .

Suppose that Myy := (h(y),...,Ik(y)), where [;: Y1 = R, i=1,... k,
are continuous linear functlonals and Y1 = W52(Q), Yo = W‘72(Q) W|th
s> 0. Then eye = c1(@)°7, i.e., the completeness defect of the
observation operator M) depends on the smoothness properties of the
imbedding Y C Y (Triebel, 1978).

A. V. Kruk and V. Reitmann (SPbSU) Upper Hausdorff dimension estimates 33 /41



A typical frictional contact problem is modeled by the following
second-order evolutionary variational inequality (Duvant, Lions, 1976, Han,
Sofonea, 2000, Jarucek, Eck, 1996): Find a displacement function u such
that for a.a. t € [0, T]

(@(t), v —a(t))y_y v + (Ai(t), v — i(t))v_,»
( (u(t)),v—o(t )) +j(v)—j(u(t)) >0, Vver, (69)

u(0) =up € Vi, u(0)=wvo € V. (70)

V77

Here V; C Vo C V_1 is a Hilbert space rigging structure, A:V; — V_; is
a linear continuous operator which is called viscosity operator.

The nonlinear map g : Vi — V_1 is the elasticity operator and j : Vi — R,
represents the contact functional.
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Under a solution u of (69), (70) on (0, T) we understand a function

u(-) € L?(0, T; V1) such that

u(-) € L2(0, T; V1), () € L2(0, T; V1, fOTj(u(r))dr < 00, and (69), (70)
is satisfied for a.a. t € (0, T).

Let us assume that for any (up, vp) € V1 X Vg and any time T >0 a
solution of (69), (70) exists. In order to rewrite (69), (70) as a first-order
variational inequality (8), (9) we define the product Hilbert space rigging
structure Y7 C Yy C Y_1 with

Yo=Vi1xVo, Yi=VixVi, Y_1=VoxV_1. (71)
Let us introduce the new variables y; = u, y» = i and 1, = v. It follows
that y3 = y» and y» = ii. In this notation the variational inequality (69) can
be rewritten as
(y2,m2 = y2)v_yon + (Ayz,m2 = y2)v_ o + (80n).m2 —y2)y, o,
+j(n2) = j(y2) 20, Vn2 €V, (72)

A. V. Kruk and V. Reitmann (SPbSU) Upper Hausdorff dimension estimates 35 /41




Using the product topology we get for arbitrary
y=W1y2) € Yaa=VoxV_rand n=(n,m) € Y1 =V xV the
representation of the duality pairing on Y_;1 X Y7 as

sm-11 = 1 m)w + (2, m)v_y v - (73)
It follows from (73) that

(2o = y2)vyvy = (Vs —y)-110 — (2o m =y, - (74)
A linear bounded operator A: Yy — Y_1 is defined by

(“Ay,n—y)-11=—(y2.,m —yi)v + (Ay2,m2 — y2)v_1.»1

Vy=y2)n=(m,n2) €Y=V x V1. (75)
It is easy to see that A defined by (75) has the representation
o I
A= [ 0 —A] ) (76)
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In order to determine the linear operator B : = = V; — Y_1 we use the
equation

(—BQO(yl), n—- y)—l,l = (So(yl)7 e — y2)V_1,V17
Vy=1y),n=(mm)e Y=V xV. (77)

From (77) it follows that

0
Bo(Cy) = , 78
A= _ (78)
where the linear operator C : Y1 — W := V) is defined by (y1,y2) — y1 .

The last remainig element in the inequality (8) is the contact functional
¥ Y1y — Ry given by

U(y) =j(r), Y(uy)eYi=VixVi. (79)
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Thank you
for your attention!
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