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Basic

Definition 1 (Discrete-time base flow)
Let Q be a topological space. A discrete-time base flow on Q is defined by the
mapping 7)(-): Z x @ — Q, (k, q) — 7X(q) satisfying the following properties:
Q 7'0(-) = idQ; )
Q TFH() =71K() o () forall k,j € Z;

Definition 2 (Discrete-time cocycle over the base flow)

Let (N, pn) be a metric space. A discrete-time cocycle over the base flow

({7*}kez, Q) is defined by the mappings {¢*(q, -)}kez,, where the mapping 1/ has
qeQ
the folowing properties:

Q@ ¥*(q,"): N = Nforall k€ Z and all g € Q;
@ v9(q,) = idy for all g € @;
o 1/}k+j(qv ) = Tpk(Tj(q)az/)l(qa ))' for all k?./ € Z and all qc Q

Further notation: (7,%).
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Basic

Definition 3 (Invariant subsets)

A family of bounded in N subsets Z = {Z(q)}4cq is said to be invariant
for (7,%) if ¥*(q, 2(q)) = Z(7*(q)) for all k € Z and q € Q.

Definition 4 (Globally B-pullback attracting subsets)

A family Z = {Z(q)}qeq is said to be globally B-pullback attracting for
(7,%) if dist(¥* (77 (q), B), Z(q)) P 0 for arbitrary g € Q and for
—00

any bounded set B C N.

Definition 5 (Global B-pullback attractor)

A family of compact subsets A = {A(q)}4cq is called a global B-pullback
attractor for (7,4) if it is invariant and globally B-pullback attracting.

[1] Kloeden P.E., Schmalfuss B. Nonautonomous systems, cocycle attractors and variable
time-step discretization, Numerical Algorithms, 1997, vol. 14, Ne 1-3, p. 141-152.
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Suppose that
o (Y.(,)y) (5,(-,-)=) and (Z,(+,-)z) are Hilbert spaces,
e Ac L(Y,Y), Be L(Z,Y), Ce€ L(Y,Y) are linear bounded
operators,
@ ¢:7Z x Z — = is a nonlinear function,
® {Ck}kez is a sequence in Y.

Consider the discrete time control system with disturbances

Yirr = Avi + BE + G, (1)

where & = &(k, zx), and zx = Cyy, k € Z.
The linear part of (1) is given by

Yk+1 = Ayk + Béx, (2)J

where {{x }kez is some sequence in =.
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?_co

Suppose H is a Hilbert space with associated norm || - ||y.
Introduce the space of square summable sequences

A2 H) = {h = {hdeer © H | 1Bl = D Il < o0} (3)

k=—o00

4

Definition 6 (¢>-controllability)

System (2) and the pair (A, B) are called ¢2-controllable if for any yo € Y
there exists a control {&x(yo)}kez € ¢2(Z, =) such that for the solution
vk(0, yo0) of (2) with this control we have {yx(0, y0)}kez € ¢2(Z; Y).

[2] Antonov V.G., Likhtarnikov A.L., Yakubovich V.A. A discrete frequency theorem for
the case of Hilbert spaces of states and controls. I, Vestnik Leningr.Univ.Math, 1980,
vol. 8. p.1-11
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Consider the system

Vi1 = Ayk + Bk + (., k € Z. (1)

v

Let us derive frequency domain conditions for dissipativity of system (1).

Definition 7 (Dissipativity)
We say that system (1) is dissipative if there exists a compact set D C Y

such that for any solution vk (ko, yo) of (1) with yy (ko, o) = Yo_there
exists a time k = k(ko, yo) such that yx(ko, y0) € D for all k > k.

[3] Dmitriev, Yu. A. Frequency conditions for the dissipativity and for the existence of
periodic solutions in pulse systems with one non-linear block, Dokl. Akad. Nauk SSSR,
1965, vol. 164, no. 1, p.28-31 (in Russian)
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Suppose that there is given the quadratic form on Y x =

F(y, &) = (F1y,y)y +2Re(F&,y)y + (F3&,6)= J

with F1 = Ff € L(Y,Y),Fr € L(Z,Y) and F € L(Z,2).
According to the quadratic form F we assume the following property

F(y,§) = 0forally € Y and £ = ¢(k, Cy), k € Z. (4)J

Consider the Hermitian extension F¢ of F given on Y¢ x =€ and
coinciding with F on Y x =.

[4] Pankov A.A. Bounded and Almost Periodic Solutions of Nonlinear Operator
Differential Equations, Kluwer Academic Publishers, London, 1990
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Consider the system

Yirr = Ayk + BE + G k € 2. (1)

Theorem 1

Suppose that the following conditions are satisfied:
@ The pair (A, B) is {?>-controllable;
@ The spectrum o(A) of A lies inside the unit disc in C, i.e.
o(A)c{AeC | |N<1};
© The frequency domain condition is satisfied, i.e. there exist some 6 > 0
such that

FE((My — A)TIBE€) < —6|[¢]|EVE €S, VA EC, A =1;

Q Inequality (4) is satisfied uniformly with respect to k.
Then system (1) has a bounded on 7Z solution {yy }kez- If the function
¢(k, z) and the sequence {C}x are almost periodic then the solution {yy} is
also almost periodic. Suppose ¢ does not depend on k and {Cx }kez is an
ergodic or mixing process. Then {yy} is ergodic o mixing.

4
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Consider again the system

Yirr = Aye+ BE + G k €2, (1) |

Theorem 2

Suppose that the conditions 1) — 3) of Theorem 1 and the following
condition are satisfied:

Q ¢(k,0) is bounded on 7Z;

Q@ Fly—y,6—¢&)=>0forally,y’ €Y and € = ¢(k, Cy),

§=9(k,&y'), kel

Then the solution {yy }kcz from Theorem 1 is unique and there exists
constants ¢; > 0 and p € (0, 1) such that for any other solution {yy }kez of
(1) we have

llyk = 7illy < c1p* 0 lyky — Tiollv+ k = ko

[5] Maltseva A.A., Reitmann V. Global stability and bifurcations of invariant measures
for the discrete cocycles of the cardiac conduction system’s equations, Differential
Equations, vol. 50, 2014, p. 1718-1732
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Consider the system

Yir1 = Ayi + By + G k € 7. (]

From [2] it follows that there exists an operator P = P* € L(Y, Y) with
P > 0 such that the Lyapunov function V(y) := (y, Py)y,y € Y satisfied
the inequality

V(Ay + Bo(k,y) + (k) — V(y) < —¢llylly,Vy € Y, Vk € Z.

Along with (1) consider the equation

7 = A + Bo Dk, zi) + (D, 2k = GV, k € Z,q € Zg, (5)J

where Zg is the Bohr compactification of the group Z,
¢ (k,zx) = ¢(q + k,2),9 € Zp, k € Z,z € Z,

where (-, -) is the continious extension of ¢ on Zg x Z.
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Consider following system:

Aky1 = Amin + RkeXP< - %)-ﬂexp = %)‘f‘ﬁkexl’( = :’")),
Ak+Hk
Tfat

)Jr“reXP(—i :

Tfat

Rk+1 = Rkexp( —
(6)

where:
°
201 — 0.7A, for A, < 130,

B(Ak) = Bk = { 500 — 3Ag, for A, > 130;

Amins Trec, V> Tfar are positive constants, k € Z;

(A, R) € R%,

Ay is the conduction time of kth impulse;

Hy is the nodal recovery time during cycle k.

Ry is the drift in the nodal conduction time of kth impulse.

[6] Sun J., Amellal F., Glass L., Billete J. Alternans and period-doubling bifurcations in

atrioventricular nodal conduction, J. theor. Biol., 1995, 173,p. 79-91.
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Exam

Consider the system:

Aki1 = Amin + RkeXP< k+H">+76XP - —>+/3keXP< :’)>,
Rii1 = Rkexp( — %) +’yexp< :f”‘t

Theorem 3
System (6) is dissipative, and the dissipative set D has the following form:

D= [Am,-,,, di 1i—2c2] X [O, d21E—3C3]’ where

0< 3exp<— —)< o, 0< exp(— %)g <1, fyexp< T“> d,
Amin + a1 + 500exp< — a)g di.

y
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Suppose that

@ Q has the structure of a measurable space (Q, €, v) with measure v;
@ B is the o-algebra of Borel subsets of N.

Definition 8 (Invariant measure)

A measure v on € x B is called invariant measure for the cocycle (7,) if
p(e~1(A)) = u(2),V4 € € x B, k € Z,

where ¢ : Q x N — Q x N is defined by ©*(q,v) = (7%(q),¥*(q, v)).

The disintegrations of v are given by the family of measures pq on B
satisfying

V(1) = [ nala)dvia). (7)

Q

[7] Maltseva, A., Reitmann, V., Bifurcations of invariant measures in discrete-time
parameter dependent cocycles, Mathematica Bohemica, 2015, no. 2, vol. 140, pp.
205-213.
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