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1 The two-phase microwave heating problem

Let Ω ⊂ R3 be a bounded domain with C 1-boundary ∂Ω.
Consider the microwave heating problem

ε(x)Et(x , t) + σ(θ)E (x , t) = curlH(x , t), (x , t) ∈ QT ,
µ(x)Ht(x , t) + curlE (x , t) = 0, (x , t) ∈ QT ,
b(θ(x , t))t = ∇[k(x)∇θ(x , t)] + σ(θ)|E (x , t)|2 (x , t) ∈ QT ,

(1)

where T ∈ R+, QT = Ω× [0,T ), E (x , t) and H(x , t) are the electric and
magnetic fields, respectively, ε(x), µ(x) and σ(θ) are the electric
permittivity, magnetic permeability and electric conductivity, respectively,
b(θ) is the enthalpy operator, k(x) is the thermal conductivity,
σ(θ)|E (x , t)|2 is the Joule’s heat and

b(s) =


b1(s) , s < θ̂

[b1(θ̂) , b2(θ̂)] , s = θ̂

b2(s) , s > θ̂

is a piecewise smooth function with differentiable monotone increasing
functions b1(s), b2(s) such that b1(θ̂) ≤ b2(θ̂).
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1 The two-phase microwave heating problem

Let ST = ∂Ω× [0,T ).

Initial and boundary conditions:

ν(x)× E (x , t) = ν(x)× G (x , t), (x , t) ∈ ST ,
θ(x , t) = 0, (x , t) ∈ ST ,
E (x , 0) = E0(x),H(x , 0) = H0(x), θ(x , 0) = θ0(x), x ∈ Ω,

(2)

where
ν(x) is the outward unit normal on ∂Ω

G (x , t) is a given external vector function on ST

E0(x),H0(x) and θ0(x) are given functions
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2 The one-dimensional heating problem

Suppose that Ω = (0, 1), E (x , t) = (0, e(x , t), 0) and
H(x , t) = (0, 0, h(x , t)), respectively.
Then we obtain the following system:

ε(x)et(x , t) + σ(θ)e(x , t) = −hx(x , t), (x , t) ∈ (0, 1)× (0,T ),
µ(x)ht(x , t) + ex(x , t) = 0, (x , t) ∈ (0, 1)× (0,T ),
b(θ(x , t))t = k(x)θxx(x , t) + σ(θ)e2(x , t) (x , t) ∈ (0, 1)× (0,T ).

(3)

Let us introduce

w(x , t) =

∫ t

0
e(x , τ)dτ.

Suppose that ε(x), µ(x), k(x) ≡ 1
Then system (3) becomes{

wtt − wxx + σ(θ)wt = 0, (x , t) ∈ (0, 1)× (0,T ),
b(θ)t − θxx = σ(θ)w2

t , (x , t) ∈ (0, 1)× (0,T ).
(4)
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2 The one-dimensional heating problem

Boundary conditions:

w(0, t) = 0,w(1, t) = 0, θx(0, t) = θx(1, t) = 0, t ∈ (0,T ).

Initial conditions:

w(x , 0) = 0,wt(x , 0) = w1(x), θ(x , 0) = θ0(x), x ∈ (0, 1).

Assumptions:

(A1) w1 ∈ L2(0, 1), θ0 is nonnegative and θ0 ∈ L2(0, 1).

(A2) ∃σ0, σ1 > 0 such that σ0 ≤ σ(z) ≤ σ1, z ∈ [0,∞).

Theorem 1
Suppose (A1)–(A2) are satisfied. Then the system (4) has for any T > 0
a weak solution
w ∈ C 1(0,T ;H1

0 (0, 1)), θ ∈ L2(0,T ;H1
0 (0, 1)) ∩ C ([0,T ]; L2(0, 1)).

(Manoranjan, Showalter, Yin, 2006)
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2 The one-dimensional heating problem

Definition 1
A pair of functions (w(x , t), θ(x , t)) is called a weak solution of system
(19) on the interval [0,T ], T > 0, if w ∈ C 1(0,T ;H1

0 (Ω)),
θ ∈ L2(0,T ;H1

0 (Ω)) ∩ C (0,T ; L2(Ω)) and the following equations are hold∫ T

0

∫ 1

0
[−ε(x)wtψt +

1
µ(x)

wxψx + σ(θ)wt ]dxdt =

∫ 1

0
ε(x)w1(x)ψ(x , 0)dx ,∫ T

0

∫ 1

0
[−b(θ)ηt + θxηx − σ(θ)w2

t η]dxdt =

∫ 1

0
b(θ0)η(x , 0),

for any test functions
ψ ∈ L2(0,T ;H1

0 (Ω)) ∩ C (0,T ; L2(Ω)), ∀η ∈ H1(0,T ;H1(Ω)), such that
ψ(x ,T ) = η(x ,T ) = 0, ∀x ∈ Ω.
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3 Doubly-nonlinear evolutionary system

Let Y1,j and Y2,j , j = 1, 0,−1 be real Hilbert spaces and (·, ·)i ,j and ‖ · ‖i ,j
be scalar products and norms of Yi ,j , i = 1, 2, j = 1, 0,−1, respectively.
The dense and continuous embeddings Y1,1 ⊂ Y1,0 ⊂ Y1,−1 and
Y2,1 ⊂ Y2,0 ⊂ Y2,−1 are called rigged Hilbert space structures.
Consider the system

d

dt
y1 = A1y1 + B1(g1(z1) + g2(z1, z2)), z1 = C1y1, (5)

d

dt
B2(y2) = A2y2 + B2φ2(z1, z2), z2 = C2y2, (6)

y1(0) = y01, y2(0) = y02, (7)

where yi ∈ Yi ,1, Ai : Yi ,1 → Yi ,−1, Bi : Ξi → Yi ,−1, Ci : Yi ,1 → Zi are
linear bounded operators, B2 : Y2,1 → Y2,1 is a nonlinear operator,
g1 : Z1 → Ξ1, g2 : Z1 × Z2 → Ξ1, φ2 : Z1 × Z2 → Ξ2 are nonlinear
functions, Ξi and Zi , i = 1, 2 are some other Hilbert spaces,
y01 ∈ Y1,1, y02 ∈ Y2,1.
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3 Doubly-nonlinear evolutionary system

Let us define the following spaces:
Y1 = Y1,1 × Y2,1, Y0 = Y1,0 × Y2,0,Y−1 = Y1,−1 × Y2,−1 with scalar
products

((y1,w1), (y2,w2))j = (y1, y2)1,j + (w1,w2)2,j , j = 1, 0,−1,

where y1, y2 ∈ Y1,j ,w1,w2 ∈ Y2,j , and correspondent norms.
Let A := (A1,A2) : Y1 → Y−1, B := (B1,B2) : Ξ1 × Ξ2 → Y−1 and
C := (C1,C2) : Y1 → Z1 × Z2 be linear bounded operators,
B := (I ,B2) : Y1 → Y2 be a nonlinear operator and
φ(·, ·) := (g1(·) + g2(·, ·), φ2(·, ·)) : Z1 × Z2 → Ξ1 × Ξ2 be a nonlinear
function.
Then system (5) – (7) can be transformed into

d

dt
B(y) = Ay + Bφ(z), z = Cy , (8)

y(0) = y0, (9)

where y = (y1, y2), z = (z1, z2), y0 = (y01, y02).
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3 Doubly-nonlinear evolutionary system

Let −∞ ≤ T1 < T2 ≤ +∞ be two arbitrary numbers. Let us define in
L2(T1,T2;Yj) the norm j = 1, 0,−1

‖y‖2,j :=

(∫ T2

T1

‖y(t)‖2j dt
)1/2

.

Let W(T1,T2;Y1,Y−1) be the space of functions y such that
y ∈ L2(T1,T2;Y1), ẏ ∈ L2(T1,T2;Y−1) with the norm

‖y‖W(T1,T2;Y1,Y−1) :=
(
‖y‖22,1 + ‖ẏ‖22,−1

)1/2
.

A solution of (8) – (9) is a function
y ∈ W(T1,T2,Y1,Y−1) ∩ C (T1,T2;Y0) satisfing equation (8) – (9) in
variational sence, i. e. for a. e. t ∈ [T1,T2] the following equation is
satisfied: (

d

dt
B(y(t))− Ay(t)− Bφ(z(t)), η − y(t)

)
−1

= 0,

∀η ∈ Y1, z(t) = Cy(t), y(0) = y0.
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3 Doubly-nonlinear evolutionary system

Assumptions:
(A3) Z1 = Ξ1 = Ξ2 = R.
(A4) ∃κ1, κ2, κ1 < κ2 : φ̃1(z1, t) := g1(z1) + g2(z1, z2(t)), where
z2(t) = C2y2(t) and y2(t) is an arbitrary solution of (5) – (7) such that the
following condition is satisfied

κ1z
2
1 ≤ φ̃1(z1, t)z1 ≤ κ2z21 , ∀z1 ∈ R, t ≥ 0.

(A5) ∃κ3 > 0 : (B2(y2),A2y2) ≤ −κ3‖y2‖22,1, ∀y2 ∈ Y2,1.

(A6) ∃κ4 > 0 such that for φ̃2(t, z2) = φ2(z1(t), z2) we have
(B2(y2),B2φ̃2(t, y2)) ≤ κ4‖y2‖22,1, ∀y2 ∈ Y2,1, t ≥ 0.
(A7) System (5) - (7) has a global weak solution.
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3 Doubly-nonlinear evolutionary system

(A8.1) The operator A1 in system (5) is regular, i. e., for any
T > 0, y10 ∈ Y1,1, ỹ1T ∈ Y1,1, f1 ∈ L2(0,T ;Y1,0) the solutions of the
direct problem d

dt y1 = A1y1 + f1(t), y1(0) = y10 and the dual problem
d
dt ỹ1 = −A∗1ỹ1 + f1(t), ỹ1(T ) = ỹ1T are strongly continuous in the norm of
Y1,1.
(A8.2) The pair (A1,B1) in system (5) is L2-controllable, i. e., for any
y10 ∈ Y1,0 there exists a control ξ1 ∈ L2(0,T ;Z1) such that the problem
d
dt y1 = A1y1 + B1ξ1, y1(0) = y10 has a solution y1 for any T > 0.
(A8.3) For the transfer function χ(s) = C1(A1 − sIY1,1)−1B1 and the
Hermitian form:

F(ξ1, z1) := Re(ξ1 − κ1z1)∗(κ2z1 − ξ1), ξ1 ∈ C, z1 ∈ C

the following frequency domain condition holds

Re(κ1χ(iω) + IΞ1)∗(κ2χ(iω) + IΞ1) ≥ 0, ∀ω ∈ R.
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3 Doubly-nonlinear evolutionary system

Theorem 2
If conditions (A3) – (A7) and (A8.1) – (A8.3) are satisfied then the
solutions of system (5) - (7) are bounded on (0,∞).

Let us make the following assumptions for system (4):
(A9) ∃ a1 > 0 such that:

|b(z)| ≤ a1|z |, ∀z ∈ R, z 6= θ̂ (10)

(A10) ∃ a2 > 0 such that:

|σ(z)| ≤ a2|z |, ∀z ∈ R. (11)

Corollary 3
Under conditions (A9) and (A10) all assumptions of Theorem 2 are
satisfied. Hence the solutions of system (4) are bounded.

(Popov, S., R., V., 2014, Popov, S., 2017)
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3 Doubly-nonlinear evolutionary system

Consider the microwave heating problem in 1-space dimension and without
phase-change:



εwtt = 1
µwxx − σ(θ)wt , (x , t) ∈ (0, 1)× (0,T ),

θt = θxx + σ(θ)w2
t , (x , t) ∈ (0, 1)× (0,T ),

w(0, t) = 0,w(1, t) = 0, t ∈ [0,T ],
θ(0, t) = θ(1, t) = 0, t ∈ [0,T ],
w(x , 0) = w0(x),wt(x , 0) = w1(x), x ∈ (0, 1),
θ(x , 0) = θ0(x), x ∈ (0, 1).

(12)

Assumptions:
1) A is the attractor of the dynamical system generated by the

approximation problem to (12);
2) ε = 1, µ = 1 or µ = 0.5;
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3 Doubly-nonlinear evolutionary system

1) Estimation of the correlation dimension:

2) Embedding by the Takens-Robinson method:

Figure: ε = 1 and
µ = 0.5

Figure: ε = 1 and
µ = 1
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4 Finite-time stability for non-autonomous heating problem

Introduce for x ∈ (0, 1) and t ∈ (0,T ) the functions

f (x , t) = f1(t)(1− x) + f2(t)x (13)

and

W (x , t) := w(x , t)− f (x , t),V (x , t) := Wt(x , t)− ft(x , t). (14)

Then the problem (19) becomes

Wt = V − ft ,
Vt = Wxx − σ(θ)V + ftt ,
θt − θxx = σ(θ)(Wt + ft)

2, (x , t) ∈ (0, 1)× (0,T ),
W (0, t) = W (1, t) = 0, θ (0, t) = θ (1, t) = 0, t ∈ (0,T ),
W (x , 0) = W0(x) := w0(x)− f (x , 0), x ∈ (0, 1),
Wt(x , 0) = W1(x) := w1(x)− ft(x , 0), x ∈ (0, 1),
θ (x , 0) = θ0 (x) , x ∈ (0, 1).

(15)
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4 Finite-time stability for non-autonomous heating problem

Let us introduce the space M = H1
0 (0, 1)× L2(0, 1)× L1(0, 1) with norm

‖(W ,V , θ)‖2M = max[‖wx‖2L2(0,1), ‖v‖
2
L2(0,1), ‖θ‖

2
L1(0,1)]. (16)

Determine the function y(t, t0, p) = (W (·, t),V (·, t), θ(·, t)) as a solution
of the problem (15) with the norm (16). Then (15) can be formally written
as system

dy

dt
= Ay + Bg(V , θ) + F (t),

where y = (W ,V , θ),F (t) = (−ft , ftt , 0) and A,B are linear operators. If
(W (x , t),V (x , t), θ(x , t)) is a solution of (15) we can write it as

y(t, t0, p) = (W (·, t),V (·, t), θ(·, t)).
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4 Finite-time stability for non-autonomous heating problem

Definition 2
System (15) is called (α, β, t0,T

′)-stable, where 0 < α ≤ β, t0 > 0 and
T ′ ≥ 0 are nonnegative numbers, if from the inequality ||y(t0)||Y < α it
follows that ||y(t)||Y < β for all t ∈ [t0, t0 + T ′).

(Weiss, Infante, 1965) - ODE-system.
(Chetaev, 1960) - visco-elastic systems.
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4 Finite-time stability for non-autonomous heating problem

(A14) Consider the heat equation:
θt − θxx = 0,
θ (x , 0) = θ0 (x) , x ∈ (0, 1),
θ (0, t) = θ (1, t) = 0, t ∈ (0,T ).

(17)

Let cD be the upper bound of θ(x , t) for x ∈ (0, 1), t ∈ (0,T ), where
θ(x , t) is an arbitrary solution of system (17).

(A15) |N(t)| ≤ cN for any t ∈ (0,T ), where
N(t) :=

∫ t
0
∑2

i=1[fit + |fitt |]dτ . Here fit and fitt are defined as

fit =
dfi
dt
, fitt =

d2fi

dt2
. (18)
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4 Finite-time stability for non-autonomous heating problem

Consider the one-dimensional microwave heating problem with
non-autonomous boundary conditions:

wtt − wxx + σ(θ)wt = 0, (x , t) ∈ (0, 1)× (0,T ),
θt − θxx = σ(θ)wt

2, (x , t) ∈ (0, 1)× (0,T ),
w(0, t) = f1(t) , w(1, t) = f2(t), t ∈ (0,T ),
θ(0, t) = θ(1, t) = 0, t ∈ (0,T ),
w(x , 0) = w0(x), wt(x , 0) = w1(x), x ∈ (0, 1),
θ(x , 0) = θ0(x), x ∈ (0, 1),

(19)

where θ(x , t) is the temperature, w(x , t) is the variable, determining the
electric field, f1 and f2 are given functions.

Popov S., Reitmann V., Skopinov S. Boundedness and finite-time stability 19 / 35



4 Finite-time stability for non-autonomous heating problem

Let the following conditions are satisfied:
(A11) There exists constants σ0 and σ1, such that
0 < σ0 ≤ σ(θ) ≤ σ1(1 + θ), ∀θ > 0;
(A12)σ is locally Lipschitz on (0,+∞),
(A13)f1, f2 ∈ C 2(R), f1(0) = 0, f2(0) = 0, wt(x , 0), θ0(x) ∈ L2(0, 1).
Denote v := wt .

Theorem 4
There exists a global weak solution (w(x , t), θ(x , t)) of the problem (19)
such that w , v ∈ C ([0,T ]; L2(0, 1)); θ ∈ L2(0,T ;H1(0, 1)).

(Yin, 1998)
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4 Finite-time stability for non-autonomous heating problem

Theorem 5

Consider problem (15) and let the conditions (A11)-(A15) be satisfied.
Then system (15) is (α, β, 0,T )-stable, if for the given parameters
α > 0, t0 = 0,T > 0 the parameter β is calculated by

β = max[β1, β2], where (20)

β1 = 4cD max
[
σ1,

1
σ 0

]
cN + 2cD max

[
σ1,

1
σ 0

]
c(f ,T )+

cDα + 4cD(c(f ,T ) + cDα)(cN + cDα)c(f ,T ),

(21)

β2 =

√
max

[
σ1,

1
σ 0

]
cN + c(δ)σ1(cN + cDα)c(f ,T ). (22)

where f (t) :=
∑2

i=1 |fit |, c(f ,T ) = e
∫ T
0 f (τ)dτ

∫ T
0 f (τ)e−

∫ τ
0 f (η)dηdτ .

(Skopinov, S., 2017)
Popov S., Reitmann V., Skopinov S. Boundedness and finite-time stability 21 / 35



5 Finite-time stability for processes

Introduce the family of mappings

ϕ(·)(·, ·) : R+ × R×M → M by
ϕt(t0, p) = y(t + t0, t0, p)

for any t ∈ R+, t0 ∈ R+, p ∈ M, where M is the Banach space
M = H1

0 (0, 1)× L2(0, 1)× L2(0, 1) with the norm

‖(W ,V , θ)‖2M = ‖W ‖2H1
0

+ ‖V ‖2L2 + ‖θ‖2L2 .

The mapping ϕ(·)(·, ·) : R+ × R×M → M is said to be a process if the
following conditions are satisfied:
1) ϕ0(s, ·) = IM for all s ∈ R+ ;
2) ϕt1+t2(s, p) = ϕt1(s + t2, ϕ

t2(s, p)) for all (s, p) ∈ R×M and
t1, t2 ∈ R+.
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5 Finite-time stability for processes

Examples of processes are dynamical systems for which ϕt(s, ·) = ϕt(·)
for s ∈ R+ and t ∈ R.
Suppose (τ, uτ ) ∈ R×M. The mapping R+ 3 t 7→ u(t) ∈ M is said to be
a motion of the process ({ϕt(s, ·)}t∈R+

s∈R
, (M, ρM)) through uτ for t = 0 if

u(t) = ϕt(τ, u(τ)), ∀t > 0, and u(0) = uτ .
Assume that 0 < α ≤ β and T ′ > 0, t0 > 0, are numbers and p ∈ M is a
fixed point. The process ({ϕt(s, ·)}t∈R+

s∈R
, (M, ρ)) is said to be

(α, β, t0,T
′, p) stable if the inequality ρM(ϕ0(τ, uτ ), p) < α for an

arbitrary pair (τ, uτ ) ∈ R+ ×M implies that ρM(ϕt(τ, uτ ), p) < β for all
t ∈ [t0, t0 + T ′).
Suppose ({ϕt(s, ·)}t∈R+

s∈R
, (M, ρM)) is a process. The map φ : R×M → R

is said to be a Lyapunov functional for this process if the following
conditions are satisfied:
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5 Finite-time stability for processes

(A16) The family of maps φ(t, ·) : M → R is continuous;
(A17) For arbitrary t ∈ R and u ∈ M there exists the limit

φ̇(t, u) := lim
s→0+

sup
1
s

[φ(t + s, ϕs(t, u))− φ(t, u)].

Theorem 6
Suppose that ({ϕt(s, ·)}t∈R+

s∈R
is a process, I := [t0, t0 + T ′] is a time

interval, 0 < α ≤ β, T ′ > 0, t0 > 0 are positive numbers, uτ ∈ M, p ∈ M
are some points and there exist a Lyapunov functional φ : I ×M → R for
the process and an integrable function g : I → R such that:
(i) φ̇(t, u(t)) < g(t) for arbitrary t ∈ I and arbitrary functions

u(·) ∈ C (t0, t0 + T ′,M) such that α ≤ ρM(u(t), p) ≤ β for all t ∈ I ;

(ii)
∫ t
s g(τ)dτ ≤ min

u∈M:ρM(u,p)=β
φ(t, u)− max

u∈M:ρM(u,p)=α
φ(s, u)

for all s, t ∈ I , s < t. Then the process ({ϕt(s, ·)}t∈R+
s∈R

, (M, ρM)) is

(α, β, t0,T
′, p)-stable.
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6 Numerical results for the one-dimensional heating problem

Consider problem (15). Initial and boundary conditions:

σ(θ) = 0.2(1 + θ), θ ∈ R,w0(x) = 0,w1(x) = 0, θ0(x) = 0, x ∈ (0, 1),
f1(t) = f2(t) = 2 sin 2t, t ∈ R.

(23)

Figure: 1 The solution component w(x , t)
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6 Numerical results for the one-dimensional heating problem

Figure: 2 The solution component θ(x , t)
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7 Multivalued dynamical systems

Suppose (M, ρM) is a complete metric space. Let ϕt : M → 2M ,∀t ∈ R+,
be a family of maps. The pair ({ϕt}t∈R+ , (M, ρM)) is said to be a
multivalued dynamical system (MDS) if the following conditions are
satisfied:
1) ϕ0(p) = {p}, ∀p ∈ M,

2) ϕt1+t2(p) ⊂ ϕt1(ϕt2(p)), ∀t1, t2 ∈ R+,∀p ∈ M .

The MDS ({ϕt}t∈R+ , (M, ρM)) is said to be continuous with respect to
the initial conditions if for arbitrary sequences {tn} ⊂ R+, {pn0} ⊂ M
such that tn → t, pn0 → p0 as n→∞ for some t ∈ R+ and p0 ∈ M there
exists for any n ∈ N a p̃n ∈ M satisfying p̃n ∈ ϕtn(pn0) and p̃n → p̃ as
n→∞.
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7 Multivalued dynamical systems

A subset Z ⊂ M is said to be
attracting if dist(ϕt(p),Z )→ 0 as t →∞, ∀p ∈ M, where
dist(W ,W ′) = inf

p∈W ,q∈W ′
ρM(p, q),W ,W ′ ⊂ M,

absorbing if ∀p ∈ M ∃T ∈ R+ : ∀t > T , t ∈ R+, ϕ
t(p) ⊂ Z ,

invariant if ϕt(Z ) = Z , ∀t ∈ R+,

a global attractor if Z is bounded and closed, invariant and globally
attracting.

Let us consider the 3 D heating problem. Introduce the set

D = {(E ,H, θ) ∈ H0(curl,Ω)× (H(curl,Ω) ∩ H0(div,Ω))× H1
0 (Ω);

µH ∈ H1(Ω)⊥ ∩ H(div0,Ω)},H1(Ω) = H(curl0,Ω) ∩ H0(div0,Ω), (24)

with the norm ‖(E ,H, θ)‖D := max{‖E‖L2(Ω)3 , ‖H‖L2(Ω)3 , ‖θ‖L2(Ω)}.
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7 Multivalued dynamical systems

Here

H(curl ,Ω) = {v ∈ L2(Ω)
3

: curl v ∈ L2(Ω)3},
H(div ,Ω) = {v ∈ L2(Ω)

3
: div v ∈ L2(Ω)3},

H0(curl ,Ω) = {v ∈ H(curl ,Ω) : v × ν = 0,∀v , ν ∈ ∂Ω},
H0(div ,Ω) = {v ∈ H(div ,Ω) : v · ν = 0,∀v , ν ∈ ∂Ω},
H(div0,Ω) = {v ∈ L2(Ω)

3
: div v = 0},

H0(div0,Ω) = H0(div ,Ω) ∩ H(div0,Ω).

(25)
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7 Multivalued dynamical systems

Introduce the map
ϕ : R+ × D → 2D (26)

through ϕt(E0,H0, θ0) = {(Ẽ , H̃, θ̃) ∈ D : ∃ solution (E ,H, θ) of (1) with
initial values E0,H0, θ0 and E (·, t) = Ẽ ,H(·, t) = H̃, θ(·, t) = θ̃}.

Theorem 7
Consider the map (26). Then:
1) (26) defines a MDS;
2) The MDS (26) is continuous with respect to the initial conditions;
3) The MDS (26) has the global attractor A =

⋂
s≥0

⋃
t≥s

ϕt(B0), where B0

is a compact absorbing set for (26).;

(Zyryanov, R., 2017)
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8 Numerical results for multivalued dynamical systems

Figure: 3 Change of the temperature at the line x ∈ (0, 1), y = 0.5, z = 0.5
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8 Numerical results for multivalued dynamical systems

Figure: 4 Change of the temperature at a central point inside the cube
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