
Nonautonomous period-doubling border-collision

bifurcations

Volker Reitmann* and Anastasia Maltseva

St. Petersburg State University Russia (SPbSU)
Faculty of Mathematics and Mechanics

*Supported by DAAD

The 12th AIMS Conference on Dynamical Systems,

Di�erential Equations and Applications

Taipei, Taiwan

July 5 � July 9, 2018



Cardiac conduction model

Consider the following system:

 Ak+1 = Amin + Rkexp
(
− Ak+Hk

τfat

)
+γexp

(
− Hk

τfat

)
+βkexp

(
− Hk

τrec

))
,

Rk+1 = Rkexp
(
− Ak+Hk

τfat

)
+ γexp

(
− Hk

τfat

)
,

(1)

where:

β(Ak) := βk =

{
201− 0.7Ak , for Ak < 130,
500− 3Ak , for Ak > 130;

Amin, τrec , γ, τfat are positive constants, k ∈ Z+;

(A,R) ∈ R2;

Ak is the conduction time of the kth impulse;

Hk is the nodal recovery time during cycle k.

Rk is the drift in the nodal conduction time of the kth impulse.

Sun J. et al (1995), Maltseva A., R. V. (2014)
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Dynamical system generated by an autonomous cardiac

conduction system

Consider the following dynamical system:

({ϕk}k∈Z, (M, ρM)), k ∈ Z+, (2)

where

M = R2,

ρM is a standard metric,

ϕk : M→M, k ∈ Z+,

ϕ(A,R) =
(
Amin+R+β(A)exp

(
− H
τrec

)
,Rexp

(
−A+H

τfat

)
+γexp

(
− H
τfat

))
,

(A,R) ∈ R2,

H is a positive constant,

β(A) :=

{
201− 0.7A, for A < 130,
500− 3A, for A > 130.
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Period-doubling border-collision bifurcation

Using the smoothness of the map ϕ from the left and from the right of the

border Γ = {(130,R)|R ∈ R}, consider the linearization of ϕ in these two

smooth domains.

Suppose that:

p is an equilibrium point of dynamical system (2), which exists at the

border Γ;
P and Q are linearization matrices from the left and from the right of

the border respectively;

σP = detP, σQ = detQ, τP = trP, τQ = trQ.

Theorem 1

Suppose that the equilibrium point p of dynamical system (2) is stable

when H < Hbif (i.e. |σP | < 1,−(1 + σP) < τP < 1 + σP), and it become

unstable when H passing throught Hbif . If

|σPσQ | < 1,−(1− σQ)(1− σP) < τPτQ < (1 + σQ)(1 + σP) then a

supercritical period-doubling border-collision bifurcation occurs when H is

passing throught Hbif .

Hassouneh M. A. (2003), Schkolnik D. (2018)
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Dissipativity and existence of a global B-attractor

Theorem 2

Dynamical system (2) is dissipative with the dissipativity region:

D =
[
0,

η

1− 3ε

]
×
[
0,

γ

1− λ

]
, where

η = Amin + γ
1−λ + 500exp(−Hmin

τrec
),

ε = −Hmin

τrec
< 1

3 , λ = exp(−Amin+Hmin

τfat
) 6= 1.

Theorem 3

Dynamical system (2) has a global B-attractor in the form:

A(M) = ω(D) = ∩k∈Z+∪s>k,s∈Z+ϕ
s(D), (3)

where D is the dissipativity region, ω(D) is the ω-limit set of dynamical

system (2).

Maltseva A., V.R. (2016)
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Invariant measures and the Perron-Frobenius operator

Let us consider the following assumptions:

1 in addition to the metric structure (M, ρM) we have the structure of a

measurable space (M,B, µ), where B is a σ-algebra overM and µ is

a measure on B;

2 ϕ is nonsingular, i.e µ(ϕ−1(B)) = 0, ∀B ∈ B : µ(B) = 0.

De�nition 1

The Perron-Frobenius operator P = Pϕ : L1(M)→ L1(M) for the

dynamical system (2) is de�ned by∫
B

Pηdµ :=

∫
ϕ−1(B)

ηdµ, ∀B ∈ B,∀η ∈ L1(M).
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Perron-Frobenius operator for the dynamical system

generated by an autonomous cardiac conduction system

For the case A < 130:

Pη(A,R) :=
∣∣∣detJ(− 10

7

(
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)
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,
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)
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)
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τrec
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(

H
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(
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τfat
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(
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7

(
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(
H

τrec

)
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)
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,
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1+ 10

7τfat
exp
(

H
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(
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7
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.

Linnik P. L. (2018)
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Perron-Frobenius operator for the dynamical system

generated by an autonomous cardiac conduction system

For the case A > 130:

Pη(A,R) :=
∣∣∣detJ(− 1
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τfat
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(
H

τrec
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−500
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3τfat
exp
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τrec
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R−γ exp
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τfat
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Linnik P. L. (2018)
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Computing of the density of an invariant measure

Using the spectral property of the Perron-Frobenius operator compute the

density of invariant measure by an iteration method:

η0 = 1,
η1 = Pη0
. . .

ηn = Pηn−1 = Pnη0.
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Density of an invariant measure

Figure 1: Density of an invariant measure for system (2)
(Amin = 33,H = 30, τrec = 70, τfat = 30, γ = 0.3).
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Basic tools of cocycle theory I

De�nition 2 (Discrete-time base �ow)

Let (Q, ρQ) be a metric space. A discrete-time base �ow on (Q, ρQ) is de�ned by

the mapping σ(·)(·) : Z×Q → Q , (k , q) 7→ σk(q) satisfying the following

properties:

1 σ0(·) = idQ;
2 σk+s(·) = σk(·) ◦ σs(·) for all k , s ∈ Z;

De�nition 3 (Discrete-time cocycle over the base �ow)

Let (N , ρN ) be a metric space. A discrete-time cocycle over the base �ow

({σk}k∈Z,Q) is de�ned by the mappings {ψk(q, ·)}k∈Z+,
q∈Q

, where the mapping ψ has

the folowing properties:

1 ψk(q, ·) : N → N for all k ∈ Z+ and all q ∈ Q;
2 ψ0(q, ·) = idN for all q ∈ Q;
3 ψk+s(q, ·) = ψk(σs(q), ψs(q, ·)), for all k , s ∈ Z+ and all q ∈ Q.

Further notation: (σ, ψ).

De�nition 4 (Skew-product dynamical system)

Consider the metric space (W, ρN ), where W := Q×N . A skew product

dynamical system is a pair ({ψ̂k}k∈Z+ , (W, ρW)), where ψ̂k :W →W,

ψ̂k(w) := (σk(q), ψk(q, v)) for all w = (q, v) ∈ W and all k ∈ Z+.
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Parametrized cocycle generated by a nonautonomous

cardiac conduction system

Let us study the parametrized family of skew products:

f̂α : Hα × R2 → Hα × R2, (H,A,R) 7→ (σα(H), fα(H,A,R)), α ∈ Λ, (4)

(Λ, ρΛ) is a parameter space, σα : Hα → Hα is the shift map

with the �bre maps

fα(H,A,R) =

{
f1,α(H,A,R), for A < 130,R ∈ R
f2,α(H,A,R), for A > 130,R ∈ R, (5)

f1,α(H,A,R) =

 Amin + R exp
(
− A+H0

τfat

)
+ γ exp

(
− H0

τfat

)
+(201− 0, 7A)exp

(
− H0

τrec

)
R exp

(
− A+H0

τfat

)
+ γ exp

(
− H0

τfat

)  ,

f2,α(H,A,R) =

 Amin + R exp
(
− A+H0

τfat

)
+ γ exp

(
− H0

τfat

)
+(500− 3A) exp

(
− H0

τrec

)
R exp

(
− A+H0

τfat

)
+ γexp

(
− H0

τfat

)  ,

H = (H0,H1,H2, . . .) ∈ `2(Z+;R) = Hα. (6)

Further notation: (σα, fα).

Sun J. et al (1995)

V. R., A. Maltseva (SPbSU) AIMS Conference July 5 � July 9, 2018 12 / 22



Basic tools of cocycle theory II

De�nition 5 (Invariant subsets)

A family of bounded in N subsets Ẑ = {Z(q)}q∈Q is said to be invariant

for the cocycle (τ, ψ) if ψk(q,Z(q)) = Z(τk(q)) for all k ∈ Z+ and q ∈ Q.

De�nition 6 (Globally B-pullback attracting subsets)

A family Ẑ = {Z(q)}q∈Q is said to be globally B-pullback attracting for

the cocycle (τ, ψ) if dist(ψk(τ−k(q),B),Z(q)) −−−→
k→∞

0 for arbitrary q ∈ Q
and for any bounded set B ⊂ N .

De�nition 7 (Global B-pullback attractor)

A family of compact subsets Â = {A(q)}q∈Q is called a global B-pullback
attractor for the cocycle (τ, ψ) if it is invariant and globally B-pullback
attracting.

Kloeden P.E., Schmalfuss B. (1997)
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Uniform dissipativity and existence of a global B-pullback
attractor for the cocycle

De�nition 8 (Uniform dissipativity)

We say that the cocycle (τ, ψ) is uniformly dissipative if there exists a compact

set D ⊂ W and k0 such, that ψk(q,w) ⊂ D for all k > k0, k ∈ Z+, for all

q ∈ Q, for all w ∈ W, where D is a dissipativity region of the cocycle (τ, ψ).

Theorem 4

Cocycle (σα, fα) is uniformly dissipative, and the dissipativity region Dα has the

following form:

Dα =
[
0,

η

1− 3ε

]
×
[
0,

γ

1− λ

]
, where (7)

η = Amin + γ
1−λ + 500exp(−Hmin

τrec
), ε = −Hmin

τrec
< 1

3 , λ = exp(−Amin+Hmin

τfat
) 6= 1.

Theorem 5

Cocycle (σα, fα) has a global B-pullback attractor in the form:

Aα(q) =
⋂
k∈Z+

⋃
s>k,
s∈Z+

f sα (σ−sα (q),Dα), ∀q ∈ Hα, α ∈ Λ, (8)

where Dα is a dissipativity region of cocycle (σα, fα).
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Global B-attractor for the cocycle generated by the

nonautonomous cardiac conduction system

Figure 2: Deterministic forcing.
Figure 3: Random forcing with a
Poisson distribution.
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Measurable cocycles

Let (Q,A,m) be a probability space.

De�nition 9 (Metric dynamical system)

A metric dynamical system (MDS) is given by a map τ (·)(·) : Z×Q → Q satisfying

1 τ0 = idQ,
2 τk+s = τk ◦ τ s , ∀k , s ∈ Z.

{τk}k∈Z are assumed to be measure preserving, i.e.

τk(m) = m,∀k ∈ Z.

Suppose that (N ,B) is a measurable space.

De�nition 10 (Measurable cocycle over the MDS)

A measurable cocycle over the MDS {τk}k∈Z is given by a map

ψ : Z+ ×Q×N → N which is for �xed time a (A⊗B,B)-measurable mapping

and satis�es for all k , s ∈ Z+ and almost all q ∈ Q and v ∈ N the relations

1 ψ0(q, v) = v ,
2 ψk+s(q, v) = ψk(τ s(q), ψs(q, v)).

Maltseva A., R. V. (2015), Imkeller, Kloeden (2003)

V. R., A. Maltseva (SPbSU) AIMS Conference July 5 � July 9, 2018 16 / 22



Invariant measures for cocycles

De�nition 11

An invariant measure µ̂ for the cocycle (τ, ψ) is a probability measure on

A⊗B which is invariant w.r.t. the skew product {ψ̂k}k∈Z+ , i.e.

ψ̂k(µ̂) = µ̂, ∀k ∈ Z+

and has the marginal πQµ̂ = m where πQ : Q×N → Q is the projection

onto Q.

We can characterize invariant measures by their disintegration

µ̂(d(q, v)) = µ̂q(dv)m(dq) (9)

or by

µ̂(Ĉ) =

∫
Q

µ̂q(Cq)dm(q), (10)

where Cq = {v ∈ N | (q, v) ∈ Ĉ, Ĉ ∈ A ⊗B}.

Maltseva A., R. V. (2015)
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The Perron-Frobenius operator for cocycles

De�nition 12

The Perron-Frobenius operator P for the cocycle (τ, ψ) is de�ned by

Pµ̂(q,Z(q)) := µ̂(q, ψ−1(q,Z(τ(q)))), q ∈ Q,

where ψ−1(q,Z(q)) is the preimage set under ψ = ψ1 of the set

Z(τ(q)) ⊂ N .
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Approximation of an invariant measure for the cocycle

Figure 4: Approximation of an invariant measure on the domain divided into
5× 0.025 rectangles.
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Bifurcation of invariant measures for cocycles

Let (Qα,Aα,mα) be a family of probability spaces depending on a

parameter α ∈ Λ.
The maps {σkα}k∈Z,α∈Λ are assumed to be a measure preserving, i.e.

σkα(mα) = mα, k ∈ Z, α ∈ Λ.
Let {µ̂α}α∈Λ be a family of invariant measures for the parametrized skew

product, i.e. ψ̂k
α(µ̂α) = µ̂α and πQα µ̂α = mα for k ∈ Z and α ∈ Λ, where

πQα : Qα ×Mα → Qα denotes the projection on Qα.

De�nition 13 (Bifurcation point of a family of invariant measures)

A parameter value α0 is called bifurcation point of a family of invariant

measures of the family of invariant measures {µ̂α}α∈Λ if this family is not

structurally stable at α0, i.e. if in any neighborhood of α0 there are

parameter values α ∈ Λ such that {ψ̂k
α0} and {ψ̂

k
α} are not topologically

equivalent.

Maltseva A., R. V. (2015), Arnold L. (1999)
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