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2. Evolutionary variational inequalities

Suppose that Yy is a real Hilbert space with (-,-)o and || - ||o as
scalar product resp. norm. Suppose also that A : D(A) C Yy is
a closed (unbounded) densely defined linear operator. The Hilbert
space Y7 is defined as D(A) equipped with the scalar product

(y7 77)1 L= ((/BI - A)y7 (/BI - A)n)07 Yy,m € D(A) ’ (1)

where 8 € p(A) (p(A) is the resolvent set of A) is an arbitrary but
fixed number the existence of which we assume.

The Hilbert space Y_1 is by definition the completion of Yy with

respect to the norm ||z||—1 = ||(BI — A)~1z||o. Thus we have the
dense and continuous imbedding
Y1 CYoCY_ 1 (2)

which is called Hilbert space rigging structure. The duality pairing
(,-)—1,1 0n Y1 x Y_1 is the unique extension by continuity of the
functionals (-,y)o withy € Y1 onto Y_1.

If —oco < Ty < T < 400 are arbitrary numbers, we define the
norm for Bochner measurable functions in L2(T1,7T%;Y;), j =
1,0, —1, through

T
lylla = ([ Nly@I? dt)*/?. 3)
T

For an arbitrary interval J in R denote by W(J) the space of func-
tions y(-) € L2 _(J; Y1) for which y (-) € L2 (J;Y_1) equipped
with the norm defined for any compact interval [T, T>] by

ly Olwerzy = Uly O3 + 119 O30 (4)

By an imbedding theorem we can assume that any function from
W(J) belongs to C(J; Yy). Assume now that = is an other real
Hilbert space with scalar product (-,-)= and norm || - ||=, respec-
tively, and J C R is an arbitrary interval.



Introduce (with A from above) the linear continuous operators
A:Y1—-Y 1 and B:=Z—>Y (5)

and the maps

w:J XY ==, (6)
¢ZY1—>R+, (7)
and f:J—=Y_1. (8)

Note that in many applications ¢ is a material law nonlinearity, B
IS a control operator, 1 is a contact-type or friction-type functional,
and f is a perturbation. Consider for a.a. ¢t € J the evolutionary
variational inequality

(9(t) — Ay(t) — Be(t,y(t)) — f(t), n—y(t))-11
+v(m) —v(y()) >0, Vnet. (9)
Forany f € L2 (J;Y_1) a function y(-) € W(J) N C(J;Yp) is
said to be a solution of (9) if this inequality is satisfied for all test

functions n € Y7.

In addition, we make the following assumptions.

(Al) Forany t € Jthe map A(t)y := —Ay — By (t,y) : Y1 —
Y_; IS semicontinuous, i.e., forany ¢t € J and any y,n,z € Y3 the
R-valued function 7 — (A(t)(y — ™), z)—1,1 IS continuous.

(A2) For any n € Y7 and any bounded set S C Y3 the family
of functions {(B¢ (-,y),n)-1.1,y € S} is equicontinuous on any
compact subinterval of J.

(A3) ¢ (-,0) = 0 on J and there exist operators N € L(Y1,=)
and M = M* € L(=, =) such that

(o (t,y1) — @ (t,y2), N(y1, —y2))=
> (o (t,y1) — @ (ty2), M(p(ty1) — o (ty2)) =,
Vte J, Vyi,y2 € Y1. (10)



(A4) There exists a quadratic form G on Yy x = and a continu-
ous functional ® : Yy — R, such that for any y1(-),y2(:) €
L2 (J;Yp) and a.a. s,t € J,s < t, we have

/ G(y1(7) —y2(7), 0 (1, y1(7)) — 0 (7,92(7)))dr

> @) — )l A1)

Furthermore, there are two constants 0 < p1 < p2 such that

p1llyll2 < d(y) < pallyl3, Vy € Yo. (12)

In addition to (A1) — (A4) we suppose that there exists a number
A > 0 such that the following assumptions are satisfied:

(A5) Forany T > O and any f € L?(0,T;Y_1) the problem

y= (A4+ 2Dy + f(t),y(0) = yo, is well-posed, i.e., for arbi-
trary yo € Yo, f(-) € L?(0,T; Y_1) there exists a unique solution
y(-) € W(0,T) withy (-) € L?(0,T; Y_1) satisfying the equation
in a variational sense and depending continuously on the initial
data, i.e.,

Iy vo.ry < etllyolld + e2ll FOIIZ -1 5 (13)

where ¢; > 0 and ¢ > 0O are some constants. Furthermore it is
supposed that any solution of y = (A 4+ M)y, y(0) = wyo, iS
exponentially decreasing for t — o0, i.e., there exist constants
c3 > 0 and £ > 0 such that

ly Mo < czelyollo, t > 0. (14)

(A6) The operator A + A\ € L(Y1,Y_1) is regular, i.e., for any
T > 0,y0 € Y1,270 € Y1 and f € L?(0, T, Yp) the solution of the
direct problem

y=(A+A)y+ f(t), y(0)=yo



and of the dual problem

z=—(A+ A2+ f(t), 2(0)=2r
are strongly continuous in ¢ in the norm of Y;.

(A7) The pair (A + M\, B) is L2-controllable, i.e., for arbitrary
yo € Yo there exists a control £€(-) € L?(0,+o00; =) such that
the problem y = (A+ Ay + B¢, y(0) = yo, is well-posed in the
variational sense on (0, +o0).

(A8) Let denote by H*¢ and L° the complexification of a linear space
H and a linear operator L, respectively, by

x(s) = (sI¢— A°)"1Bc, s ¢ p(A®), the transfer operator, and by
Gg°¢ the Hermitian extension of G.

There exist a number © > 0 such that with p> from (12) and the
imbedding constants v from Y1 C Yy

© [Re(f, NCX(iw _ >‘) g)Ec + (E) MCS)EC]

+ G (x (iw — X) &,8) + yAp2llx (iw — A) €] < 0,
VweR, VE€=C. (15

(A9) For any positive P = P* € L(Yp, Yp) and § > 0 which are
with v, p2 and © > 0 from (A8) solution of the inequality
((A + )\I) Yy + BS) Py)—l,l + S [(67 Ny)E — (67 MS)E]

+ G (5, 8) + A p2 lylIF < =6 [llyllT + 11€1|2]
VeEe= VyeYr, (16)

we have

Y(y1) — Y (y1 — P(yr —y2)) + ¥ (y2) — ¥ (y2 + P(y1 —y2)) > 0
Vuyi,y2 € Y1, (17)

and on Y3 the function ¥ p(y) := v (y— Py) — ¢ (y) is convex and
lower continuous, i.e., yr — vy In Y7 implies

Yp(y) < ”]';legf Yp(yr).



(A10) For any yo € Yp the existence of at least one solution y(-)
of (9) on R4 with y(0) = yo is supposed. The uniqueness to the
right and the continuous dependence of solutions on initial states
is assumed in the following sense:

a) If y1, yo are two solutions of (9) on R4 and y1(to) = y2(to) for
some tg > 0then yi1(t) = y2(t), Vit > to.

b) Ify(-,ar), k= 1,2,...,are solutions of (9) with y(to, ar) = ax
on Jg = [to,t1] or Jo = [t1,t0] and ar, — a for k — oo in Yy then
there exists a subsequence k,, — oo with y(-,ax. ) — y forn — oo
in C'(Jo; Yp) and y is a solution of (9) on Jg with y(tg) = a.

3 Existence of bounded solutions

Let (E,||-||g) be a Banach space. Denote by C,(R; E) C C(R; E)

the subspace of bounded continuous functions equipped with the

norm || f|lc, = sup || f(¢)||g, which gives a Banach space struc-
teR

ture.

The space BS?(R; E) of bounded (with exponent 2) in the sense
of Stepanov functions is the subspace of all functions f from L2 _(R; E)
which have a finite norm

t+1
1712 = sup / 11 dr
teR J¢

Lemma 3.1 Assume that the assumptions (A3) — (A10) are satis-
fied. Then there exists a positive operator P = P* € L(Yp, Yo)
suchthat P € £(Y_1,Yp) N L(Yo, Y1) and the functional

1 1
V(y) = E(y,Py)o-I-ECD(y), y €Yy,

has the following properties:



a) Suppose that y(-) is an arbitrary solution of (9). Then for any
s,t € J, s <t,we have

V(y(t))|§+2>\/ V(y(T))dTS/(f(T),Py(T))1,1d7.
(1)

b) Suppose that f € BS?(R,;Y_1). Then there exist constants
a > 0 and 8 > 0 such that for any solution y(-) of (9) and any
time interval [s, t] C Ry from ||y(7)|lo > B on [s, t] it follows that

V(y (M) < —a / ly(I3 dr. )

c) Let y1(-), y2(-) be solutions of (9) with f = f, € L2 (J; Y_1),
1 = 1,2. Thenforany s,t € J, s < t, we have

V(51 (7) — g2 () + 2/\/ V (51 (7) = y2(r)) dr

< / (1(7) = Fo(7), Pa(7) — g2(P)))rndr . (3)

d) Suppose that y1 (), y2(-) are two solutions of (9) Then for any
to € Jandallt > to(t < to, respectively), t € J, we have

V(yi(t) —y2(®)) < e v (g4 (to) — y2(to)) -
(>) (4)

Proof Due to the assumptions (A5) — (A9) from the Likhtarnikov-
Yakubovich frequency-theorem (Likhtarnikov, Yakubovich; 1976) it



follows that there exists an operator P = P* € L(Yo, Yp) such
that P € £(Y_1,Yy) N L(Yp, Y1) and a number § > 0 such that

((A4+ Ay + B¢, Py)-110 +O[(§, Ny)= — (&, M¢E)=]
+ G (5, &) + v Ap2llylly < =6 [yl + 1 €lIZ]

VyeY, VEée=. (5
If we putin (5) £ = 0 we get the inequality
((A+ XDy, Py)-11 < —4dlylli, Vyevi. (6)

Using the assumption (A5) it follows from (6) that P > 0. Note
that P is not necessarily coercive. In order to get this property we
consider the functional

1 1
Due to the property P > 0 and the assumption (A4) V' is coercive.

Let us prove the assertion a). With the given solution y(-) of (9) we
consider for any ¢t € J the test functionn = —Py(t) + y (t) € Y.
It follows from (9) that

(y(t), Py (t))-11 + A (y (t), Py (t))o
—((A+ XDy (t) + B (t,y(t), Py (t))-11 + ¢ (y(t))
— Y (y () —Py ) < (f(t), Py(t))-11 . (8)

Using the estimate (5) we derive from (8) the inequality

(g (¢), Py ())-11+ A (y (£), Py ())o+ © [(¢ (£, y(¢)), Ny(t))=
— (p(t,y(1)), Mo (t,y(t)))=] + G(y(), ¢ (t,y(t)))
+ Y2y 1T + 6 iy @OIIF + llet, y(#))[1Z]
+ ¥ (y @) — () — Py (t)) < (f(t),Py(t))-11 - 9)
Along the solution y(-) we have by (A3) and (A9)
O [(p (L, y(t)), Ny(t))= — (o(t,y(t)), Mp(t,y(t)))=] >0,

b (y(®)) = (y() — Py(t)) > 0,6 [[ly®IIE + lle(t, y(#))[2] > 0.
(10)



Integrating (9) on a time interval [s, ], s,t € J, we get
SO Py @O0+ [ @, Py dr
+ [6w®, e Gu@ i+ [ lu@IRdr
< [(G@ Py . @

From (A4) it follows that

/ G (y (), @ (1,9 (1)) + 7 Ap2 / ly()IE dr
L ITONE +/\/ Sy dr.  (12)

S

Taking into account now (11) and (12) we obtain that
1 1 t
5@ Py 0+ 3G @)] |
t
+23 [ S0P+ 50 G @) ar
< [ U@, Py@)azdr. a3

From (13) we conclude that (1) is satisfied.

Now let us prove d). With respect to the solution y; we consider
the test function n = y1 + P(y> — y1) in order to derive from (9)
the inequality (we suppress t in y;)

(y1 — Ay1 — By (t,y1) — f(t), P(y2—y1))-11
+ Y (y1 +P(y2—y1)) —¢(y1) >0. (14)
With respect to the solution y» we consider the test function
n=1y> — P (y2 —y1) . This gives
(Y2 — Ay2 — B (t,y2) — f(t), —P(y2—y1))-1.1
+ ¢ (y2 — P(y2—y1)) =¥ (y2) > 0. (15)



If we add the inequalities (14) and (15) we receive

(y1 — 92, P(y2 —y1))-11+ (A(y2 —y1) + Ble (t,y2) — ¢ (t,y1)],
Py —vy1))-11+ ¢ (1 + P(y2—y1)) — ¢ (y1)
+ ¢ (y2—P(y2—y1)) — ¢ (y2) >0 (16)

or, equivalently,

(2 — 91, P(y2 —y1))-1,1 — (A(y2 —y1) + Ble (t,y2) — o (t,y1)],
P(y2—y1))-11+v¢ (y1) =¥ (y1 + P(y2 —y1))
+ ¢ (y2) =¥ (y2 — P(y2 —v1)) <O. (17)

From (17) and (A9) it follows that

(2 — 91, P(y2—y1))-11 — (A(y2 — y1)
+ Ble (t,y2) — o (t,y1)], P(y2 —y1))-1,1 < 0. (18)

and, consequently,

(92 — 91, P(y2 —y1))-11 + A(y2 —v1, P(y2 —v1))o
— ((A4+ X)) (y2 —y1) + Ble (t,y2) — ¢ (¢, y1)],
P(y2—v1))-11<0. (19)

We use again use the inequality (5) with y = y> — y; and £ =
o(t,y2) — p(t,y1) to derive from (19) the estimate

(92 —y1, P(y2 —y1))-11+ A(y2 —y1, P (y2 — y1))o

+ O[(p (t,y2) — o(t,y1), N(y2 —y1))= — (¢(t,y2) — ¢ (t,y1),

M (p(t,y2) —o(t,y1))=] + G (y2 — y1, ¢ (t,y2) — ¢ (t,y1))

+ yo2Ally2 — w1ll3 + Sllly2 —walli + et y2) — ot y1) 121 < 0.
(20)

Along the solution pair y1, y> we have according to (A3) the prop-
erty

O[(¢ (t,y2) —(t,y1), N(y2 —y1))=
— (p(t,y2) — o (t,y1), M(p(t,y2) — @(t,y1))=] > 0. (21)



Integration of (20) on [s,t] C J under consideration of (21) and
d > 0 gives

1 t
> (2= w1, Pz~ y0olt + A [ (2 =1, P vz~ o dr

t
+ / G (y2 — y1, ¢ (7,92)

— o (1,y1)) dT +vp2 [} |ly2 — y1]|3dm < 0. (22)
From (A4) it follows that

t t
/ G (y2 —y1, ¢ (1,y2) — @ (T,91)) dT-I-vpz)\/ ly2 — v |5 d7

1 t
> S@ -+ [ © ) dr, 23)

Using (23) we derive from (22) the inequality
1
5[(:’;2 —y1, P(y2—y1))o + @ (v — y1)][. (24)

| 1
+ 2>\/ [5 (y2 —y1, P(y2—y1))o + Ecb(yz —y1)]dr <0.
From (24) we conclude that the function

m(®) = 5[5 =31 (), P2()=91()) o+ (12(8) —y1(8))]

satisfies the inequality

t
TMﬂﬁ+2A/TMﬂdw§o,
from which (1) follows immediately.

Lemma 3.2 Suppose that V' : Yo — Ry is a continuous function
which satisfies the following properties.

a) There exist constants 0 < v; < 2 with
yllylld < V() <llylls, YyeYo. (25)



b) There exist constants o« > 0 and g > 0O such that for any solu-
tion y(-) of (9) and any time interval [s, t] C R4 from ||y(7)|lo > B
on [s, t] it follows that

t
V@)l < —a [ Ty} dr. (26)
If » > 0 is an arbitrary number satisfying the inclusion

S={yeYo: V() <n}D{yeYo:llyllo<B}, (27)

then S'is positively invariant for (9) and any solution of (9) enters S
in a certain finite time.

Proof a) Suppose that y(-) is a solution of (9) with y(tg) € S
and y(t1) ¢ S for some t; > to. It follows that V(y(¢t1)) > n
and ||y (t1)||o > B. Denote by t’' the maximal time in (to,¢1) with
ly(t')||lo = B. On the interval (¢',t1) the inequality ||y(7)||lo > B
is satisfied. It follows by (26) that

(31

V(y (M) < —a / ly(DI3 dr <0, (28)

t

and, consequently, V(y(t1)) < V(y(t')) < n . But this is a con-
tradiction which shows that y (t1) € S.

b) Consider a solution y () of (9) with y(tp) ¢ S and
ly(to)llo > B. Assume that y(t) ¢ S, Vit > to, i.€.,

V(@) >n and [y@)lo>8, Vi>to. (29
From (28) and (29) it follows that for all ¢ > ¢¢

V (y (M)l < —a / ly(DI2 dr < —a Bt — to)
and

0<n<V(y(t) <V(y(to)) — af(t—to) .



But the last inequality is impossible for large ¢.

Corollary 3.1 Suppose that the assumptions (A3) — (A10) are
satisfied and

f€BS*(Ry; Y1) . (30)
Then any solution y(-) of (9) belongs to Cy, (R4 ; Yp).
Proof From the assumptions (A3) — (A10) it follows that there ex-

ists a continuous function V' which satisfies (1). Together with
Lemma 3.1 we get the boundedness of any solution in Yo on R..

(Pankov; 1986, Yakubovich; 1964)

Lemma 3.3 Suppose that there exists a bounded and closed set
S C Yo which has the following properties:

a) If for a solution y(-) of (9) we have y(tg) € S then

b) Any solution y (-) of (9) enters the set S at a certain time.

Then the inequality (9) has a solution y € Cy(R; Yp) such that
y(t)e S, VteR

Proof Recall that y(-, a) denotes a solution of (9) with (0, a) = a.
Put So := S and definefor 5 = 1,2,... the sets

Sj={{a €Yo :y(—j,a) € So} .
It is clear that

So D51 D8 D---. (31)

Let us show that any set S; is closed. Suppose for this that {a;} is
a sequence of points in S; with a;, — a in Y. By assumption there
exists a subsequence k,, — oo and a solution y(-,a) of (9) such
that y(—j,ar. ) — y(—j,a) in Yo. Since So is closed it follows that
y(—j,a) € So,i.e.,a € 5.



From (31) and the closedness of S; it follows that there exists a
pointag € N.S;. For any solution y (-, ao) of (9) we have y(t, ao) €
So,t > 0.Fromag € S;,7 = 1,2,..., it follows that there exists
a solution y](a CI,O) with y](_]a CI,O) S SO; y](oa a’O) — ao, and
y;(t,a0) € So, Vt > —j. Choose a subsequence {j,,} with
y;.(—1,a0) — ai1. By assumption we can assume that there exists
a solution yM (-) of (9) with 5., (-, a0) — y)(-) on [—1, 0]. In ad-
dition to this we have y(1)(0) = ap and y{1)(—1) = a; € So. Take
now a subsequence {j, } with y;, (—2,a0) — a2 € So forl — oo.
Again there is a solution y(? () of (9) such that y;, (-,a0) —
y@ () on [-2,-1], y@(=2) = az € Sp, and yP (-1) = a1. If
we continue this process we get on any interval [—m, —m + 1] a
solution y(™) (.) satisfying y("™) (—=m) = a.,, € So and

ym™m(—m +1) =am_1 € So,m = 1,2,... . The bounded on R
solution of (9) is defined by y(t) = y(™)(¢t), t € [-m, —m + 1].

4 Existence of almost periodic solutions

Let (E, || - ||g) be a Banach space and let f : R — E be continu-
ous. Ife > O, thenanumber T" € R is called e-almost period of f if
sup ||f (t+T)—f(t)||e < e.The function f is called Bohr almost
teR

periodic or uniformly almost periodic (shortly f € CAP(R; E) or
uniformly a.p.) if for each ¢ > 0 there is R > 0O such that each
interval (r,» + R) C R (» € R) contains at least one e-almost
period of f. For a function f € L2 _(R; E) define the

loc
Bochner transform f° by

fP@) = f(t+n),nel0,1], teR,

as a (continuous) function with values in L2(0, 1; E). A function
f € BS?(R; E) is called an almost periodic function in the sense
of Stepanov (shortly S2—a.p.) if f® € CAP

(R; L?(0,1; E)). The e-almost periods of the function f° are called
the e-almost periods of f. The space of S?—a.p. functions with val-
ues in E is denoted by S?(R; E). Obviously,

CAP(R; E) C S?(R; E).



In order to derive sufficient conditions for the existence of almost
periodic solutions in (9) we need one additional assumption.

(A11) The family of functions {p(-,y),y € Y1} is uniformly almost
periodic on any set {y € Y1 : ||y||1 < const}.

Theorem 4.1 Under the assumptions (A3) — (A11l) there exists for
any f € BS?(R; Y_1) a unique bounded on R solution y.(-) of
(9). This solution is exponentially stable in the whole, i.e., there
exist positive constants ¢ > 0 and € > 0 such that for any other
solution y of (9), any top € R and any ¢t > to we have

ly(®) =y (Dllo < ce™* " ly(to) —yultdllo . (1)
If ¢ satisfies (A11) and f € S?(R; Y_1) then y.(-) belongs to CAP
(R; Yo).

Proof (For the case ¢(t,y) = ¢(y)) Under our assumptions and
for f € BS?(R; Y_1) the existence of a bounded on R solution
y«(+) of (9) follows from Lemma 3.3. The exponential stability of
y«(+) results from (4). The inequality (4) implies immediately that
y.(-) is the only bounded on R solution. Suppose f € S%(R; Y_1)
and consider an arbitrary e-almost period of f. Define the function
w(t) ;= y.(t + T) — y«(t). Using Lemma 3.1 it is easy to show
that there are constants ¢; > O and c> > O such that for alltp € R
and arbitrary t > tg

VY2(w(t)) < c1e” 0 V2(w(to)) + cae . 2)
If we choose to — —oo for any fixed t we get the inequality
VI2(w(t)) < ese,

which shows that T is an ¢ e-almost period with respect to the
metric V'1/2

Example 4.1
Yo = L?(0,1), Y1 =W"?(0,1)

1
(u,v)1 = /0 (uv + ugvy) do (3)



A1 =Y 1,(Au,v) 11 = fol(Au)(w)v(m)d:v —
— fol(a’ux'vx + buv) dz ,V u,v € WH2(0, 1) (4)

(" Au = au — bu,")
==R,B:=—>Y,,
(B¢,v)_11 :=adv(l), VEER, Vve WhH?(0,1) (5)

("B=adé(xz—1)")
uz(0,1) =0, we(1,8) =g(w(t)) + f(1), (6)

g : R - R continuous, f € L2.(R) N CAP (R)
v WH2(0,1) - R
K

1
: Y1 — R linear continuous, K(u) = / k(x)u(x,t)dx ,
0

¢ : L?(0,1) - R given by
u € L?(0,1) = w(-) = K (u(:)) = g(w(:)) €R (7)

Jpo >0 Vwi,wz @ 0< (g(wr) — g(w2)) (w1 — w2)
< po(wi —w2)?,  (8)

Jdc1 >0 Vwi,wr € W(0,T) Vs<t, s,te(0,T):

/ (1 — 1) (p(w1) — @(w2)) dr > exfwi(r) — wa(P)PLL (9)

x(s) = K(u(z,s)), s€C,

s1i = afigy — bii, ,(0,8) = 0, 1z(1,£) = 0 (10)
ab cosh(:y/s + bx)
x(s) = K —— (11)
Vs+b Slnh(E\/s +b
d© >0 de>0 dA>0 VYweR:
o Re x(iw — A) + © Re (lwx(iw — a)) > ¢, (12)
Im >0 VYueWh?(0,1) : K(u) > ml|ul|? (13)

= assumptions of Theorem 4.1 are satisfied



