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2. Evolutionary variational inequalities

Suppose that �� is a real Hilbert space with ��� ��� and � � �� as
scalar product resp. norm. Suppose also that � � ���� � �� is
a closed (unbounded) densely defined linear operator. The Hilbert
space �� is defined as ���� equipped with the scalar product

��� ��� �� ���� ����� ��� ������ � �� � � ���� � (1)

where � � ���� ����� is the resolvent set of �) is an arbitrary but
fixed number the existence of which we assume.

The Hilbert space ��� is by definition the completion of �� with
respect to the norm ����� � ���� � �������. Thus we have the
dense and continuous imbedding

�� � �� � ��� (2)

which is called Hilbert space rigging structure. The duality pairing
��� ������ on �� � ��� is the unique extension by continuity of the
functionals ��� ��� with � � �� onto ���	

If �� � 
� � 
� � �� are arbitrary numbers, we define the
norm for Bochner measurable functions in ���
�� 
����� � 
 �
������ � through

������ �� �

� ��

��

�������� ������ 	 (3)

For an arbitrary interval � in � denote by 	��� the space of func-
tions ���� � ��

��������� for which �� ��� � ��
���������� equipped

with the norm defined for any compact interval 	
�� 
�
 by

�� ������������ �� ��� �������� � � �� ������������� 	 (4)

By an imbedding theorem we can assume that any function from
	��� belongs to �������	 Assume now that � is an other real
Hilbert space with scalar product ��� ��� and norm � � �� � respec-
tively, and � � � is an arbitrary interval.



Introduce (with � from above) the linear continuous operators

� � �� 
 ��� and � � �
 ��� (5)

and the maps

� � � � �� 
 � � (6)
� � �� 
 �	 � (7)

and � � � 
 ��� 	 (8)

Note that in many applications � is a material law nonlinearity, �
is a control operator, � is a contact-type or friction-type functional,
and � is a perturbation. Consider for a.a. � � � the evolutionary
variational inequality

� ����������������� ������ ���� � � � ���������
� ����� ������� � � � � � � �� 	 (9)

For any � � ��
���������� a function ���� � 	��� 
 ������� is

said to be a solution of (9) if this inequality is satisfied for all test
functions � � ��.

In addition, we make the following assumptions.

(A1) For any � � � the map ����� �� ��� � � � ��� �� � �� 

��� is semicontinuous, i.e., for any � � � and any �� �� � � �� the
� -valued function � �
 ������� � ���� ������ is continuous.

(A2) For any � � �� and any bounded set � � �� the family
of functions ���� ��� ��� ������ � � � �� is equicontinuous on any
compact subinterval of � .

(A3) � ����� � � on � and there exist operators � � �������
and � � � � � ������ such that

�� ��� ���� � ��� ���� �����������
� �� ��� ���� � ��� ���� �

�
� ��� ���� � ��� ���

�
�
�

� � � �� � ��� �� � �� 	 (10)



(A4) There exists a quadratic form � on �� � � and a continu-
ous functional � � �� 
 �	 such that for any ������ ����� �
��
��������� and a.a. �� � � �� � � �� we have� �

�

�������� ������ � ��� ������� � ��� ���������

� �



�������� ��������� 	 (11)

Furthermore, there are two constants � � �� � �� such that

������� � ���� � ������� � � � � ��	 (12)

In addition to (A1) – (A4) we suppose that there exists a number
� � � such that the following assumptions are satisfied:

(A5) For any 
 � � and any � � ����� 
 ����� the problem
�� � �� � ��� � � ����� ���� � ��� is well-posed, i.e., for arbi-
trary �� � ��� ���� � ����� 
 ����� there exists a unique solution
���� � 	��� 
� with �� ��� � ����� 
 ����� satisfying the equation
in a variational sense and depending continuously on the initial
data, i.e.,

�������
����� � � �������� � ������������� � (13)

where �� � � and �� � � are some constants. Furthermore it is
supposed that any solution of �� � �� � ��� � � � ��� � ��� is
exponentially decreasing for � 
 ��� i.e., there exist constants
�
 � � and � � � such that

�� ����� � �
 �
�������� � � � � 	 (14)

(A6) The operator � � �� � ����� ���� is regular, i.e., for any

 � �� �� � ��� �� � �� and � � ����� 
 ���� the solution of the
direct problem

�� � ��� ���� � ����� � ��� � ��



and of the dual problem

�� � ���� ����� � ����� ���� � ��

are strongly continuous in � in the norm of ��.

(A7) The pair �� � ����� is ��-controllable, i.e., for arbitrary
�� � �� there exists a control  ��� � ���������� such that
the problem �� � ��������� � ���� � ��� is well-posed in the
variational sense on ������	

(A8) Let denote by ! � and �� the complexification of a linear space
! and a linear operator �, respectively, by
"��� � ����������� � � � #� �����, the transfer operator, and by
�� the Hermitian extension of �.

There exist a number � � � such that with �� from (12) and the
imbedding constants $ from �� � ��

�
�
��

�
 �� �"�%& � ��  

�
��
� � �� � ���

�
� �� �" �%& � ��  �  � � $����" �%& � ��  ��� �

�

� � �

� & � � � �  � � � 	 (15)

(A9) For any positive ' � ' � � ����� ��� and Æ � � which are
with $� �� and � � � from (A8) solution of the inequality

���� ��� � ��  � '������ ��
�
� ����� � � �� ��

�
� � ���  � � $� �� ����� � �Æ

������ � � ���
�

�  � �� � � � �� � (16)

we have

������ ���� � '��� � ���� � ������ ���� � '��� � ���� � �

� ��� �� � �� � (17)

and on �� the function �	��� �� ����'���� ��� is convex and
lower continuous, i.e., �
 
 � in �� implies
�	��� � ��� ���


��
�	��
�	



(A10) For any �� � �� the existence of at least one solution ����
of (9) on �	 with ���� � �� is supposed. The uniqueness to the
right and the continuous dependence of solutions on initial states
is assumed in the following sense:

a) If ��� �� are two solutions of (9) on �	 and ������ � ������ for
some �� � � then ����� � ����� � � � � ��	

b) If ���� (
�� ) � ��
� 	 	 	 � are solutions of (9) with ����� (
� � (

on �� � 	��� ��
 or �� � 	��� ��
 and (
 
 ( for ) 
� in �� then
there exists a subsequence )� 
� with ���� (
�

�
 � for *
�
in �������� and � is a solution of (9) on �� with ����� � (	

3 Existence of bounded solutions

Let �+� ����� be a Banach space. Denote by �
�� �+� � ��� �+�
the subspace of bounded continuous functions equipped with the
norm �����

� ���
���

�������, which gives a Banach space struc-

ture.

The space ����� �+� of bounded (with exponent 2) in the sense
of Stepanov functions is the subspace of all functions � from ��

����� �+�
which have a finite norm

������ � ���
���

� �	�

�

�������� �� 	

Lemma 3.1 Assume that the assumptions (A3) – (A10) are satis-
fied. Then there exists a positive operator ' � ' � � ����� ���
such that ' � ������ ��� 
 ����� ��� and the functional

, ��� ��
�



��� '��� �

�



���� � � � �� �

has the following properties:



a) Suppose that ���� is an arbitrary solution of (9). Then for any
�� � � �� � � �� we have

, �� ������� �
�

� �

�

, �� ���� �� �
� �

�

������ '� �������� �� 	

(1)

b) Suppose that � � �����	�����	 Then there exist constants
- � � and � � � such that for any solution ���� of (9) and any
time interval 	�� �
 � �	 from ������� � � on 	�� �
 it follows that

, �� ������� � �-

� �

�

�������� �� 	 (2)

c) Let ������ ����� be solutions of (9) with � � �� � ��
�����������

% � ��
	 Then for any �� � � �� � � �� we have

, ��� ���� ��������� �
�

� �

�

, ������� ������ ��

�
� �

�

������� ������ ' ������� ����������� �� 	 (3)

d) Suppose that ������ ����� are two solutions of (9) Then for any
�� � � and all � � ���� � ��� respectively), � � �� we have

, ������� ������ � ���������� , �������� ������� 	

��� (4)

Proof Due to the assumptions (A5) – (A9) from the Likhtarnikov-
Yakubovich frequency-theorem (Likhtarnikov, Yakubovich; 1976) it



follows that there exists an operator ' � ' � � ����� ��� such
that ' � ������ ��� 
 ����� ��� and a number Æ � � such that

���� ���� ��  � '������ ��	� ����� � � �� ��


� � ���  � � $�������� � �Æ
� ����� � �  ���

�
� � � ��� �  � � 	 (5)

If we put in (5)  � � we get the inequality

���� ����� '������ � � Æ����� � � � � �� 	 (6)

Using the assumption (A5) it follows from (6) that ' � �. Note
that ' is not necessarily coercive. In order to get this property we
consider the functional

, ��� ��
�



��� '��� �

�



���� � � � � �� 	 (7)

Due to the property ' � � and the assumption (A4) , is coercive.

Let us prove the assertion a). With the given solution ���� of (9) we
consider for any � � � the test function � � �'����� � ��� � ��	
It follows from (9) that

� �� ���� '� �������� � � �� ���� '� �����
� ���� ���� ��� �� � ��� ����� '� �������� � � ������

� � �� ���� '� ���� � ������ '� �������� 	 (8)

Using the estimate (5) we derive from (8) the inequality

� �� ���� '� �������� � � �� ���� '� ����� ��	�� ��� ������ �������
� ����� ������ �� ��� �������
 � ������� � ��� ������

� $����������� � Æ 	�������� � ����� ��������

� � �� ����� � ������ '� ���� � ������ '� �������� 	 (9)

Along the solution ���� we have by (A3) and (A9)

�	�� ��� ������ ������� � ����� ������ �� ��� �������
 � � �

� ������� � ������ '����� � � � Æ 	�������� � ����� ��������
 � � 	

(10)



Integrating (9) on a time interval 	�� �
� �� � � �� we get

�



�� ���� '� ����� ��� � �

� �

�

�� ���� '� ����� ��

�

� �

�

� �� ���� � ��� � ����� �� � $���

� �

�

�������� ��

�
� �

�

�� ���� '� �������� �� 	 (11)

From (A4) it follows that� �

�

� �� ���� � ��� � ����� � $���

� �

�

�������� ��

� �



��� ���� ��� � �

� �

�

��� ���� �� 	 (12)

Taking into account now (11) and (12) we obtain that�
�



�� ���� '� ����� �

�



��� ����

� ���
�

� 
�

� �

�

�
�



�� ���� '� ����� �

�



��� ����

�
��

�
� �

�

������ '� �������� �� 	 (13)

From (13) we conclude that (1) is satisfied.

Now let us prove d). With respect to the solution �� we consider
the test function � � �� � '��� � ��� in order to derive from (9)
the inequality (we suppress � in ��)

� ��� ���� �� � ��� ���� ����� '��� � ��������
� � ��� � '��� � ����� � ���� � � 	 (14)

With respect to the solution �� we consider the test function
� � �� � ' ��� � ��� 	 This gives

� ��� ���� �� � ��� ���� ����� �'��� � ��������
� � ��� � '��� � ����� � ���� � � 	 (15)



If we add the inequalities (14) and (15) we receive

� ��� � ���� '��� � �������� � ����� � ��� �� 	� ��� ���� � ��� ���
�

'��� � �������� � � ��� � '��� � ����� � ����

� � ��� � '��� � ����� � ���� � � (16)

or, equivalently,

� ��� � ���� '��� � �������� � ����� � ��� �� 	� ��� ���� � ��� ���
�

'��� � �������� � � ����� � ��� � '��� � ����

� � ����� � ��� � '��� � ���� � � 	 (17)

From (17) and (A9) it follows that

� ��� � ���� '��� � �������� � ����� � ���

� � 	� ��� ���� � ��� ���
 � '��� � �������� � � 	 (18)

and, consequently,

� ��� � ���� '��� � �������� � ���� � ��� ' ��� � �����
� ���� ��� ��� � ��� � � 	� ��� ���� � ��� ���
�

' ��� � �������� � � 	 (19)

We use again use the inequality (5) with � � �� � �� and  �
���� ���� ���� ��� to derive from (19) the estimate

� ��� � ���� '��� � �������� � ���� � ��� ' ��� � �����
� �	�� ��� ���� ���� ���� ���� � ����� � ����� ���� � ��� ����

������ ���� ���� �����
 � � ��� � ��� � ��� ���� � ��� ����

� $������ � ����� � Æ	��� � ����� � ����� ���� ���� ������
 � � 	

(20)

Along the solution pair ��� �� we have according to (A3) the prop-
erty

�	�� ��� ���� ���� ���� ���� � �����
� ����� ���� � ��� ���� ������ ���� ���� �����
 � � 	 (21)



Integration of (20) on 	�� �
 � � under consideration of (21) and
Æ � � gives

�



��� � ��� '��� � �������� � �

� �

�

��� � ��� ' ��� � ����� ��

�

� �

�

� ��� � ��� � ��� ���

� � ��� ���� �� � $���
� �

�
��� � ����� �� � � 	 (22)

From (A4) it follows that� �

�

� ��� � ��� � ��� ���� � ��� ���� �� � $���

� �

�

��� � ����� ��

� �



���� � ������ � �

� �

�

���� � ��� �� 	 (23)

Using (23) we derive from (22) the inequality

�




�
��� � ��� '��� � ����� ����� � ���

���� (24)

� 
�

� �

�

��


��� � ��� ' ��� � ����� �

�



���� � ���

�
�� � � 	

From (24) we conclude that the function

.��� ��
�




��
������������ '�������������

�
�
���������������

�
satisfies the inequality

.������ �
�

� �

�

.��� �� � � �

from which (1) follows immediately.

Lemma 3.2 Suppose that , � �� 
 �	 is a continuous function
which satisfies the following properties.

a) There exist constants � � $� � $� with

$������ � , ��� � $������ � � � � �� 	 (25)



b) There exist constants - � � and � � � such that for any solu-
tion ���� of (9) and any time interval 	�� �
 � �	 from ������� � �
on 	�� �
 it follows that

, �� ������� � �-

� �

�

�������� �� 	 (26)

If � � � is an arbitrary number satisfying the inclusion

� �� �� � �� � , ��� � �� � �� � �� � ���� � �� � (27)

then � is positively invariant for (9) and any solution of (9) enters �
in a certain finite time.

Proof a) Suppose that ���� is a solution of (9) with ����� � �
and ����� #� � for some �� � ��	 It follows that , ������� � �
and �� ������ � �	 Denote by �� the maximal time in ���� ��� with
�������� � �	 On the interval ���� ��� the inequality ������� � �
is satisfied. It follows by (26) that

, �� ��������� � �-

� ��

��

�������� �� � � � (28)

and, consequently, , ������� � , ������� � � 	 But this is a con-
tradiction which shows that � ���� � �.

b) Consider a solution � ��� of (9) with ����� #� � and
�������� � �	 Assume that ���� #� �� � � � ��� i.e.,

, �� ���� � � and �� ����� � � � � � � �� 	 (29)

From (28) and (29) it follows that for all � � ��

, �� �������� � �-

� �

��
�������� �� � �-���� ���

and

� � � � , �� ���� � , �� ������ -���� ��� 	



But the last inequality is impossible for large �.

Corollary 3.1 Suppose that the assumptions (A3) – (A10) are
satisfied and

� � �����	����� 	 (30)

Then any solution ���� of (9) belongs to �
 ��	����	

Proof From the assumptions (A3) – (A10) it follows that there ex-
ists a continuous function , which satisfies (1). Together with
Lemma 3.1 we get the boundedness of any solution in �� on �	.

(Pankov; 1986, Yakubovich; 1964)

Lemma 3.3 Suppose that there exists a bounded and closed set
� � �� which has the following properties:

a) If for a solution ���� of (9) we have ����� � � then
���� � �� �� � ��;

b) Any solution � ��� of (9) enters the set � at a certain time.

Then the inequality (9) has a solution � � �
�� � ��� such that
� ��� � �� � � � �

Proof Recall that ���� (� denotes a solution of (9) with ���� (� � (	
Put �� �� � and define for 
 � ��
� 	 	 	 the sets

�� �� �( � �� � ���
� (� � ��� 	

It is clear that

�� � �� � �� � � � � 	 (31)

Let us show that any set �� is closed. Suppose for this that �(
� is
a sequence of points in �� with (
 
 ( in ��. By assumption there
exists a subsequence )� 
 � and a solution ���� (� of (9) such
that ���
� (
�

�
 ���
� (� in ��. Since �� is closed it follows that
���
� (� � ��� i.e., ( � ��.



From (31) and the closedness of �� it follows that there exists a
point (� � 
��	 For any solution � ��� (�� of (9) we have ���� (�� �
��� � � � 	 From (� � ��� 
 � ��
� 	 	 	 � it follows that there exists
a solution ����� (�� with ����
� (�� � ��� ����� (�� � (�� and
����� (�� � ��� �� � �
	 Choose a subsequence �
�� with
������� (��
 (�	 By assumption we can assume that there exists
a solution ������� of (9) with 
���� (��
 ������� on 	����
. In ad-
dition to this we have ������� � (� and �������� � (� � ��	 Take
now a subsequence �
��

� with ���
�

��
� (��
 (� � �� for / 
�	

Again there is a solution ������� of (9) such that ���
�
��� (�� 


������� on 	�
���
� ������
� � (� � ��� and �������� � (�	 If
we continue this process we get on any interval 	�.��.� �
 a
solution ������� satisfying ������.� � (� � �� and
������.��� � (��� � �� �. � ��
� 	 	 	 	 The bounded on �

solution of (9) is defined by ���� � �������� � � 	�.��.� �
	

4 Existence of almost periodic solutions

Let �+� � � ��� be a Banach space and let � � � 
 + be continu-
ous. If � � �� then a number 
 � � is called �-almost period of � if
���
���

�� ���
��� ����� � �	 The function � is called Bohr almost

periodic or uniformly almost periodic (shortly � � CAP�� �+� or
uniformly a.p.) if for each � � � there is 0 � � such that each
interval �1� 1 � 0� � � �1 � �� contains at least one �-almost
period of � . For a function � � ��

����� �+� define the
Bochner transform � 
 by

� 
��� �� ���� �� � � � 	���
 � � � � �

as a (continuous) function with values in �������+�	 A function
� � ����� �+� is called an almost periodic function in the sense
of Stepanov (shortly ���a.p.) if � 
 � CAP
�� ��������+��	 The �-almost periods of the function � 
 are called
the �-almost periods of � . The space of ���a.p. functions with val-
ues in + is denoted by ���� �+�. Obviously,
CAP�� �+� � ���� �+� 	



In order to derive sufficient conditions for the existence of almost
periodic solutions in (9) we need one additional assumption.

(A11) The family of functions ����� ��� � � ��� is uniformly almost
periodic on any set �� � �� � ���� � ������	
Theorem 4.1 Under the assumptions (A3) – (A11) there exists for
any � � ����� � ���� a unique bounded on � solution ����� of
(9). This solution is exponentially stable in the whole, i.e., there
exist positive constants � � � and � � � such that for any other
solution � of (9), any �� � � and any � � �� we have

������ ������� � � ���������������� �������� 	 (1)

If � satisfies (A11) and � � ���� � ���� then ����� belongs to CAP
�� � ���	

Proof (For the case ���� �� � ����� Under our assumptions and
for � � ����� � ���� the existence of a bounded on � solution
����� of (9) follows from Lemma 3.3. The exponential stability of
����� results from (4). The inequality (4) implies immediately that
����� is the only bounded on � solution. Suppose � � ���� � ����
and consider an arbitrary �-almost period of � . Define the function
2��� �� ���� � 
� � �����	 Using Lemma 3.1 it is easy to show
that there are constants �� � � and �� � � such that for all �� � �

and arbitrary � � ��

, ����2���� � �� �
������� , ����2����� � �� � 	 (2)

If we choose �� 
 �� for any fixed � we get the inequality

, ����2���� � �� � �

which shows that 
 is an �� �-almost period with respect to the
metric , ��� .

Example 4.1

�� � �������� �� � 3 ��������

�4� 5�� �

� �

�

�45 � 4�5�� �6 (3)



� � �� 
 ��� � ��4� 5����� �
� �

�
��4��6�5�6��6 ��

� � �

�
�(4�5� � 745� �6 �� 4� 5 �3 �������� (4)

���4 � (4� 74���

� � � � � � �
 ��� �

��  � 5����� �� (  5��� � �  � � � � 5 �3 �������� (5)

��� � (Æ�6� ����

4���� �� � � � 4���� �� � 8�2���� � ���� � (6)

8 � � 
 � continuous, � � ��
������ 
 CAP ���

� � 3 ��������
 �

9 � �� 
 � linear continuous, 9�4� �

� �

�

)�6�4�6� �� �6 �

� � �������
 � given by
4 � ������� �
 2��� � 9 �4���� �
 8�2���� � � (7)

�:� � � �2�� 2� � � � �8�2��� 8�2����2� � 2��

� :��2� � 2��
� � (8)

� �� � � �2�� 2� � 	��� 
� � � � �� �� � � ��� 
� �� �

�

� �2� � �2�� ���2��� ��2��� �� � ���2����� 2��������� (9)

"��� � 9��4�6� ��� � � � � �

��4 � (�4�� � 7�4 � �4���� �� � � � �4���� �� � � (10)

"��� � 9

	
(7 ������

�

�
�� 76��

�� 7 ������
�

�
�� 7



(11)

�� � � � � � � �� � � �& � � �

:���"�%& � �� �����%&"�%& � -�� � � � (12)

�. � � �4 �3 �������� � 9�4� � .�4��� (13)

� assumptions of Theorem 4.1 are satisfied


