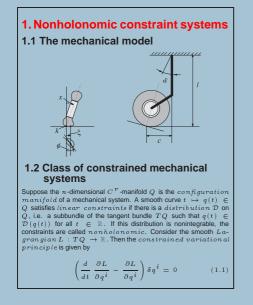


Embedding techniques for nonholonomic constrained and forced systems with an application to the rolling elastic tire

H. Kantz, V. Reitmann

Max Planck Institute for the Physics of Complex Systems, Dresden



2. Embedding techniques 2.1 Strong differential observability Given

 $\dot{q} = f(q, u), w = h(q)$

on the n-dimensional analytical compact manifold $Q, u: \mathbb{R} \to U \subset \mathbb{R}^{du}$ is a smooth control, $h: Q \to \mathbb{R}^{dw}$ a smooth output. Let $k \in \mathbb{N}$. Define the map $\phi_{f,h,k}: Q \times U \times \mathbb{R}^{(k-1)du} \to$ $\mathbb{R}^{\,k\,d\,w}$ by

(2.1)

 $(q_0, u(0), \dot{u}(0), \ldots, u^{(k-1)}(0)) \mapsto$

 $S\phi_{f,h,k}: Q \times U \times \mathbb{R}^{(k-1)} du \rightarrow \mathbb{R}^{kdw} \times \mathbb{R}^{kdu}$

 $\begin{array}{l} \text{given by } (q_0, u(0), u(0), \ldots, u^{\left(k-1\right)}(0)) &\mapsto (h(\varphi(t)), \\ \\ \frac{d}{dt}h(\varphi(t)), \ldots, \frac{d^{k-1}}{dt^{k-1}}h(\varphi(t))|_{t=0}, \end{array} \end{array}$

 $u(0), \dot{u}(0), \ldots, u^{(k-1)}(0)).$

System (2.1) is called strongly differentially observable of order k if $S \, \phi \, _{f,\,h \, , \, k}$ is an embedding.

3. Output stabilization 3.1 The inverse Lyapunov theorem

Given (2.1) with the stationary set E. Can we find a control u which depends only on the measurement w and which stabilizes E?

Convergence to a single equilibrium Gauthier, Kupka (1994)

Convergence to the stationary set

Assumption (A1): For $u(t) = u_0(t)$ the set E is Inverse Lyapunov's theorem (Wilson(1969)):

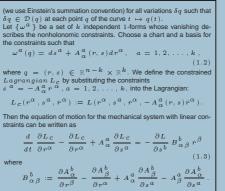
Suppose $D = \{q \in Q | \varphi^t(q) \to E\}$ is the domain of attraction. Then there exists a $C \stackrel{\infty}{\sim}$ function $V : D \to \mathbb{R}$ such that

1) $V(q) = 0, \forall q \in E, V(q) > 0, \forall q \in D \setminus E;$ 2) $V_f(q) < 0$ in $D \setminus E$; 3) $V(q) \to \infty$ as $q \to \partial D$.

Goal: Use such a Lyapunov function in order to construct a stabilizing feedback for the autonomous system (2.1)

3.2 Center manifold theorem

Let M be an open set in \mathbb{R}^{n} , $f \in C^{\infty}$ vector field on M, and $p \in M$ a stationary point of f. Denote by $\{\varphi^{t}(\cdot)\}_{t \in (-\varepsilon, \varepsilon)}$ the local flow of f on $(-\varepsilon, \varepsilon) \times U$, U a neighborhood of p. Let $\phi^t : T_p \mathbb{R}^n \to T_p \mathbb{R}^n$, $t \in (-\varepsilon, \varepsilon)$, be the tangent mapping of $\{\phi^t\}$ at p.



1.3 The pneumatic tire as nonholonomic svstem

The equation of motion is given by the Lagrange d'Alembert equation The equation of motion is given by the Lagrange dimension equation $\frac{d}{dt} \frac{\partial T}{\partial q i} - \frac{\partial T}{\partial q j} = Q_j + R_j, j = 1, \dots, n, \quad (1.4)$ where $T = T(q^j, q^j, t)$ is the kinetic energy, $Q_j = Q_j(q^i, q^i, t), j = 1, 2, \dots, n$, are the generalized

2.2 Equilibrium points and observability

 ${\bf J}$ oan (1995): Let $Q,\,f,\,h$ be analytic, $u\,(t)\equiv 0,\,(2.1)$ strongly differentially observable and E be the set of equilibria. Then $\dim\,E\,\leq\,d_{\,W}\,=\,1\,.$

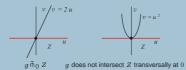
Conjecture 2.1 Let in (2.1) f be an analytic vector field on the compact analytic manifold Q with the stationary set E satisfying

 $d_w > \max\{\dim E + 1, d_u\}.$ (2.2) Then the set of analytic functions $h: Q \to \mathbb{R}^{dw}$ such that (2.1) is strongly differentially observable of order $k \ge 2 \dim Q + 1$ contains a residual set of the analytical functions $h:Q
ightarrow\mathbb{R}$

2.3 Observability and transversality

The observability property is expressed in terms of the transversality of a particular mapping. Let M, N be smooth manifolds, Z be a submanifold in N and $g: M \to N$ be a smooth map. The map g transversally intersects Z at $p \in M$ if either $q = g(p) \notin Z$ or, if $q \in Z$, then $\mathsf{Image}(d_p g) + Tq(Z) = Tq(N)$.

Notation: $g\bar{\mathfrak{m}}_p Z$



Assumption (A3): $\mathbb{R}^n = N \oplus H$ is a df-invariant decomposition, such that $df_{|N}$ has only imaginary eigenvalues, and $df_{|H}$ has no purely imaginary eigenvalues.

(i) $p \in Z$ and $T_p Z = N$, and (ii) for any $p \in Z$, the maximal orbit of f in U passing through p at time 0 is contained in Z. (iii) For any $q \in U$ such that the maximal positive (resp. negative) semiorbit of f in U starting (resp. ending) for t = 0 at q, is defined for all $t \ge 0$ (resp. $t \le 0$), then the set $\omega_U(q)$ (resp. $\alpha_U(q)$) is contained in Z.

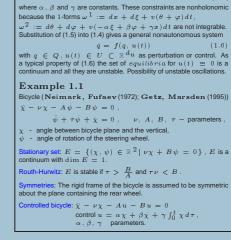
 $\left(\begin{array}{cc} 0I_m & 00 \end{array}\right)$

 $A_{k,m} := \begin{bmatrix} \cdots \\ 0 \\ 0 \end{bmatrix}$

3.3 Generically asymptotic observer Assumption (A2): System (2.1) is strongly different observable of order k. Define the high-gain matrix $K_{\Theta} := \operatorname{diag}(\Theta, \Theta^2, \dots, \Theta^n), \Theta > 1$ parameter.

0*Im*

 $, b_{k,m} =$



forces, $R_j = R_j(\xi, \varphi, \chi)$ are the generalized reaction forces of the constraints *connected with the elastic deformation* of the tire. The linear constraints are given by the rolling property of the tire

the tire. The linear constraints are given by the terms in , $\dot{x} + \dot{\xi} + v\theta + v\varphi = 0$, $\dot{\theta} + \dot{\varphi} - \alpha v\xi + \beta v\varphi + \gamma v\chi = 0$ (1.5)

Transversality is a generic property (open and dense)

Analytic (subanalytic) sets are locally defined by a finite number of equa-tions (equations and inequalities) given by analytic functions. Whitney stratification: Decomposition of a set A into a finite union of manifolds A_i given by algebraic equations or inequalities. Example 2.1

 $A = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1(x_1 - x_2^2) = 0 \} = \bigcup_{i=1}^5 A_i ,$ where $A_1(A_2)$ is the positive (negative) part of the x_2 -axis, $A_3 = \{(x_1, x_2) | x_2 = x_1^{1/2}, x_1 > 0\},\$

 $A_4 = \{(x_1, x_2) | x_2 = -(x_1)^{1/2}, x_1 > 0\},\$ $A_5 = \{(0,0)\}.$

Bad sets (no transversality) are vector bundles with analytic (subana-lytic) subsets of a vector space as a typical fibre.

$C_{k,m}:=(I_m,0,\ldots,0),$ the stabilizing feedback $\alpha_k(\cdot,\cdot)$ of the k-th extension of (2.1), the phase-variable representation $\phi_k(\cdot,\cdot,\cdot)$ (both available), the k-th extended
$ \begin{cases} system \\ \vec{q} = f(q, u^{(0)}), \omega = (u^{(0)}, \tilde{u}_{k-1}), \\ \omega = A_{k,du} \omega + b_{k,du} \alpha_k(z, \omega), \end{cases} $ $ (3.1)$
the output observer in the Luenberger form for state estimation
$\dot{z} = (A_{k,kw} - K_{\Theta}C_{k,dw})z \qquad (3.2)$
$+ K_{\Theta} h(q) + b_{k,dw} \phi_{k}(z, \omega, \alpha_{k}(z, \omega)).$
Conjecture 3.1 Suppose that the assumptions (A1), (A2) are satisfied. Then system (3.1), (3.2) gives an asymptotic stabilization of the stationary set E , i.e. dist $(q(t), E) \rightarrow 0$ as

Special case: $E = \{q_0\}$ Aeyels (1985), Gauthier, Kupka (1994)

Remark 3.1 Modifications of the observer (3.2).

a) High-gain extended $Kalman\ filter,$ where K_{Θ} is not constant;

b) High-gain observer where the observations are sampled; c) Observer for joint state and paramter estimation.

 \mathbf{d}) We avoid the use of derivatives of the measu