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1 Feedba
k 
ontrol systems

Suppose

_y = f(y) (1.1)

with a ve
tor fun
tion f : R

n

! R

n

(�parent �ow") is given.

Then (1.1) 
an be written as feedba
k 
ontrol system

_y = Ay + B� (Cy(t)) ; (1.2)

where A;B and C are arbitrary n� n matri
es (B and C regular) and

�(�) = B

�1

[f(C

�1

�)�AC

�1

�℄; � 2 R

n

: Consider the more general system

_y = Ay +B�(t) ; �(t) = �(Cy(t); �

0

) (1.3)

with the n�n; n�m and l�m matri
es A;B and C and the nonlinearity

� whi
h 
an be smooth, pie
ewise smooth or a hysteresis fun
tion.

� � �

� �

�

Fig. 1

Example 1.1 dry fri
tion, elasto-plasti
 deformation (Fig. 1) �

Remark 1.1 (1.3) 
an also des
ribe an in�nite-dimensional system. Sup-

pose Y

1

� Y

0

� Y

�1

are densely and 
ontinuously embedded Hilbert spa
es

(rigged Hilbert spa
e stru
ture), Z and W are also Hilbert spa
es,

A : Y

1

! Y

�1

; B : �! Y

�1

; C : Y

1

! W

are bounded linear operators, � :W ! � is a nonlinearity, and the equation

_y = Ay +B� (Cy) (1.4)

is the state spa
e realization model for well-posed input-output (measure-

ment) maps.



� ODE 
ase: Y

1

= Y

0

= Y

�1

= R

n

; W = R

s

; � = R

r

� PDE (Boundary 
ontrol system)

Y

0

= L

2

(0; 1); Y

1

= W

1;2

(0; 1); Y

�1

= Y

�

; A : Y

1

! Y

�1

;

(Au; v)

1;�1

=

R

1

0

(Au)(x)v(x)dx = �

R

1

0

(au

x

v

x

+ bu v)dx;

8u; v 2W

1;2

(0; 1)

� = R ; B : �! Y

�1

; B = aÆ(x� 1); g : R ! R ; a > 0; b > 0 numbers

�u

�t

= au

xx

� bu; 0 < x < 1 ;

u

x

(0; t) = 0; u

x

(1; t) = g(w(t)) ; u(�; 0) = u

0

g(w(t)) = Cu(x; t) =

R

1

0


(x)u(x; t)dx; 
 2 L

2

(0; 1) :

9

>

=

>

;

(1.5)

� Fun
tional di�erential equations (FDE's or PDE's with delay)

_y(t) =

m

X

k=0

A

k

y(t + r

k

) +B�(Cy

t

) ;�r � r

m

< � � � < r

1

< r

0

= 0 ; (1.6)

y(0) = h 2 H; y

0

= � 2 L

2

([�r; 0℄;H); H Hilbert spa
e

y

t

(�) : [�r; 0℄! H; y

t

(�) = y(t + �) a.a. � 2 [�r; 0℄

A

i

: D(A

i

) � H ! H; i = 0; 1; : : : ;m ; Y

0

= L

2

([�r; 0℄;H)�H;

B 2 L (U;H); U Hilbert spa
e

F : D(F ) � Y

0

! Y

0

given by F (f�; hg) := f _�;

P

m

k=0

A

k

h(r

k

)+B�(C�)g

D(F ) = f f�; hg 2 Y

0

j� : [�r; 0℄! H absolutely 
ontinuous,

_� 2 L

2

([�r; 0℄;H); h = �(0) 2 D(A)g ODE in the skew-produ
t Y

0

_z(t) =

�

Az(t) +

�

B

�

�(

�

Cz(t)) � F (z(t)); z(0) = z

0

2 Y

0

(1.7)

(f�; hg; f�; kg)

0

:=

R

0

�r

(�(�); �(�))

H

d� + (h; k)

H

for f�; hg; f�; kg 2 Y

0

H = R

n

: _y =

R

0

�r

�(s)y(t + s)ds + A

1

y(t) + A

2

y(t� r) + b'(�(t));

�(t) = 


�

y(t) +

R

0

�r

g

�

(s)y(t + s)ds; y(0) = h; y

0

= � ;

with b and 
 n-ve
tors, g 2 L

2

([�r; 0℄;R

n

);

� 2 L

2

([�r; 0℄; R

n�n

); A

1

and A

2

n� n matri
es,

' : R ! R s.t. the generalized solutions exist



Some solution 
on
eptions for (1.3)

1) Weak solutions in some Sobolev spa
e

2) Classi
al solutions for di�erential in
lusions

3) Filippov solutions, i.e. absolutely 
ontinuous fun
tions y(�) whi
h satisfy

(1.3) almost everywhere.

(H1) For any initial state (1.3) has exa
tly one Filippov solution on

[0;1):

2 The re
onstru
tion prin
iple and the 
one 
ondition

Let 
 = fy(t)jt � 0g be a semi-orbit of (1.3), � the proje
tion on some

plane E (Fig. 2).

A 
 �


�

E

E interse
tion �
 no interse
tion

Fig. 2

How to 
hoose a proje
tion � : R

3

! E

�

=

R

2

su
h that � : 
 ! � 
 is

one-to-one and 
ontinuous in A ?

(H2) (
one 
ondition) There exist a set S � R

n

and an n� n-matrix

P = P

�

having 2 negative and (n�2) positive eigenvalues su
h that for

any two solutions y

1

(�); y

2

(�) of (1.3) with y

i

(t) 2 S;8 t � 0; i = 1; 2;

we have with V (y) = y

�

Py the inequality

V (y

1

(t)� y

2

(t)) � 0 ; 8 t � 0 (2.1)

[10℄ Smith, [2℄ Foias et al, [7℄ Robinson.



Geometri
al interpretation of the 
one 
ondition for n = 3

Assume V (y) = y

�

Py is a quadrati
 form satisfying (2.1) along the so-

lutions of (1.3), K := fyjV (y) � 0g is a 2-dimensional 
one, R

3

nK is a

1-dimensional 
one (Fig.3). Let l be the dire
tion of the main axis of R

3

nK

with l

�

P l > 0; E is the orthogonal to l plane through the origin, � is the

orthogonal proje
tion on E.

Suppose that y

1

(�); y

2

(�) are two arbitrary distin
t solutions of (1.3) in S,

i.e. y

1

(t) 6= y

2

(t) 8 t � 0; y

1

(t); y

2

(t) 2 S; 8 t � 0: From (2.1) we have

V (y

1

(t)� y

2

(t)) � 0; 8 t � 0; i.e. y

1

(t)� y

2

(t) 2 K; 8 t � 0:

Then

� y

1

(t) 6= � y

2

(t); 8 t � 0 : (2.2)

Assume the opposite, i.e. assume that

9 t

0

� 0 : � y

1

(t

0

) = � y

2

(t

0

) : (2.3)

It follows from (2.3) that � [y

1

(t

0

)� y

2

(t

0

)℄ = 0; i.e. the point

y

1

(t

0

) � y

2

(t

0

) is proje
ted under � into 0. But then there exists a k 6= 0

su
h that y

1

(t

0

)� y

2

(t

0

) = kl: Consequently we have V (kl) = k

2

l

�

P l > 0;

a 
ontradi
tion to the fa
t that V (y

1

(t

0

)� y

2

(t

0

)) � 0:

R

3

nK l

y

1

(t) K

�y

1

(t)

E

y

2

(t)

�y

2

(t)

Fig. 3



3 Frequen
y-domain methods

Suppose A;B and C are matri
es of order n � n; n � m and l � n; re-

spe
tively, F (x; �) is a Hermitian form on C

n

� C

m

, i.e. a quadrati
 form

whi
h takes only real values. The pair (A;B) is 
alled stabilizable if there

exists an n�m matrix D su
h that A + BD is Hurwitzian, i.e. has only

eigenvalues with negative real part.

Theorem 3.1 (Frequen
y theorem; Yakubovi
h, 1962; Kalman, 1963)

Let the pair (A;B) be stabilizable and det(i!I �A) 6= 0; 8! 2 R .

a) For the existen
e of a real symmetri
 n� n-matrix P satisfying the

Ri

ati inequality

2Rex

�

P (Ax +B�) + F (x; �) < 0;

8x 2 C

n

8 � 2 C

m

; jxj + j�j 6= 0 (3.1)

it is ne
essary and su�
ient that the frequen
y-domain 
ondition

F ((i!I �A)

�1

B �; �) < 0;

8 � 2 C

m

; � 6= 0 8! 2 R (3.2)

is satis�ed.

b) A matrix P = P

�

satisfying (3.1) 
an be 
omputed in a �nite number

of steps.

Consider the system

_y = Ay +B�(Cy(t)) ; (3.3)

where A;B and C are matri
es of order n�n; n�1 and 1�n, respe
tively.

Introdu
e the transfer fun
tion �(z) = C(zI�A)

�1

B for z 2 C : det(zI�

A) 6= 0:

� : R ! R satis�es the following 
ondition:



(H3) There exist parameters �

1

< 0 < �

2

su
h that

�

1

(�

1

� �

2

)

2

� [�(�

1

)� �(�

2

)℄(�

1

� �

2

) � �

2

(�

1

� �

2

)

2

8�

1

; �

2

2 R (3.4)

Remark 3.1 If � is C

1

the 
ondition (3.4) 
an be written in the following

way:

(H3)' There exist parameters �

1

< 0 < �

2

su
h that

�

1

� �

0

(�) � �

2

; 8� 2 R (3:4)

0

�

Theorem 3.2 Suppose that for � from (3.3) the 
ondition (H3) is

satis�ed and there exists a � > 0 su
h that the following holds:

1) The pair (A + �I;B) is stabilizable ;

2) The matrix A + �I has exa
tly two eigenvalues with

positive real part and (n� 2) with negative real part;

)

(Gap

3) Re [1+�

1

�(i!��)℄ [1+�

2

�(i!��)℄

�

> 0; 8! 2 R ; 
ondition)

Then there exists an n�n-matrix P = P

�

having 2 negative and (n�2)

positive eigenvalues, and a number " > 0 su
h that with the fun
tion

V (y) = y

�

Py the inequality

d

dt

V (y

1

(t)� y

2

(t)) + �V (y

1

(t)� y

2

(t))� "jy

1

(t)� y

2

(t)j

2

; 8 t � 0

(3.5)

(Squeezing property)

is satis�ed for any two solutions y

1

(�); y

2

(�) of (3.3).

Proof of Theorem 3.2 Suppose y

1

(�); y

2

(�) are two arbitrary solutions of (3.3). Then y := y

1

� y

2

is

a solution of

_y = Ay +B with  (t) := �(�

1

(t))� �(�

2

(t));

�

i

(t) := Cy

i

(t); i = 1; 2:

By assumption (H3) we have with � = �

1

� �

2

the inequality

�

1

�(t)

2

�  (t)�(t) � �

2

�(t)

2

; 8 t � 0 : (3.6)



Be
ause of 1) and 3) Theorem 3.1 is appli
able with the Hermitian form

F (y; �) = Re [(�

2

Cy � �)(� � �

1

Cy)

�

℄ (Fig. 4). It follows that there exist an n� n-matrix

P = P

�

and a number " > 0 su
h that

2 y

�

P [(A+ �I)y +B ℄ + (�

2

Cy �  )( � �

1

Cy) � � "

�

jyj

2

+ j j

2

�

8 y 2 R

n

; 8 2 R : (3.7)

For  = 0 we get from (3.7) the inequality

2 y

�

P (A+ �I)y � �

1

�

2

(Cy)

2

� �"jyj

2

; 8 y 2 R

n

: (3.8)

Sin
e �

1

�

2

< 0 inequality (3.8) implies that

y

�

P (A+ �I)y + y

�

(A+ �I)

�

Py < 0; 8 y 2 R

n

y 6= 0 : (3.9)

From (3.9) it follows by Lyapunov's theorem that the matrix P has exa
tly 2 negative and (n � 2)

positive eigenvalues, sin
e A+�I has 2 eigenvalues with positive real part and (n� 2) eigenvalues with

negative real part.

Putting in (3.7) y = y

1

� y

2

;  = �(Cy

1

)� �(Cy

2

) and using the fa
t that

[�

2

C(y

1

� y

2

)� (�(Cy

1

)� �(Cy

2

))℄ [(�(Cy

1

)� �(Cy

2

))� �

1

C(y

1

� y

2

)℄ � 0 ;

we derive from (3.7) the inequality

d

dt

V (y

1

(t)� y

2

(t)) + 2�V (y

1

(t)� y

2

(t)) � �"jy

1

(t)� y

2

(t)j

2

; 8 t � 0 : �

Geometri
al interpretation of the frequen
y-domain 
ondition

C

C[�

1

; �

2

℄

��

�1

2

��

�1

1

�(i! � �)

Fig. 4

4 Amenable solutions and essential modes

De�nition 4.1 (R. A. Smith, 1987) Suppose � > 0 is a number. A

solution y(�) of (1.3) is 
alled amenable if there exists a number � 2 R

su
h that y(t) 2 S; 8 t � �; and

R

�

�1

e

2�t

jy(t)j

2

dt < +1:



Remark 4.1 If (1.3) has a 
ompa
t attra
tor then all solutions inside the

attra
tor are amenable. �

Theorem 4.1 Suppose that the 
onditions of Theorem 3.2 are satis�ed

with a parameter � > 0 and P = P

�

is the n � n matrix satisfying

(3.7) and having 2 negative and (n� 2) positive eigenvalues.

Choose a matrix Q = Q

�

of order n� n su
h that

Q

�

PQ =

0

B

B

B

B

B

�

�1

�1 0

+1

0

.

.

.

+1

1

C

C

C

C

C

A

and de�ne the linear map � : R

n

! R

2

by � y := u where

�

u

v

�

= Q

�1

y

with u 2 R

2

;

v 2 R

n�2

: Then if A is the set of amenable solution of (3.3) the map

� : A ! �A (4.1)

is a homeomorphism, i.e. one-to-one and bi
ontinuous.

De�nition 4.2 (O. Ladyzhenskaya [5℄) Suppose that (1.4) has in the

(in�nite-dimensional) phase-spa
e Y

0

an attra
tor A and a �nite-

dimensional proje
tor � with the following property: For any two or-

bits 


1

; 


2

of the attra
tor A the 
ondition � 


1

= � 


2

implies 


1

= 


2

:

Then we say that the number of essential or determining modes of (1.4)

for A is �nite.

Corollary 4.1 Suppose that the 
onditions of Theorem 3.2 are satis�ed

and (3.3) has a 
ompa
t attra
tor A. Then the number of essential

modes for A is two.



Remark 4.2 In many 
ases in the system _y = Ay + B�(Cy) (1.4) we

have a symmetri
 A = A

�

: Y

1

! Y

�1

. If the embedding Y

1

� Y

�1

is


ompletely 
ontinuous then the operator A has a system of eigenfun
tions

(modes) fw

j

g asso
iated to eigenvalues f�

j

g by Aw

j

= �

j

w

j

; w

j

2 Y

1

; �

i

<

�

i+1

; �

i

! +1; (w

j

; w

k

) = Æ

k

j

su
h that fw

j

g is a basis of Y

1

, i.e. any

element y 
an be written as y =

P

y

j

w

j

;

P

y

2

j

<1:

Then � y := (y

1

; y

2

) 2 R

2

or, more general, � y = (y

1

; : : : ; y

i

) 2 R

i

is a

�nite-dimensional proje
tion. Physi
ally this means that the total energy

of an orbit is dominated by the energy of the �rst i modes. �

Proof of Theorem 4.1 (See also Smith [10℄)

d

dt

[e

2�t

V (y

1

� y

2

)℄ � �2 "e

2�t

jy

1

� y

2

j

2

; 8 t � � ;

if y

1

; y

2

2 S: Integration on [�; � ℄ gives

e

2��

V (y

1

(�)� y

2

(�)) � e

2��

V (y

1

(�)� y

2

(�))� 2 "

Z

�

�

e

2�t

jy

1

(t)� y

2

(t)j

2

dt: (4.2)

Sin
e e

�t

jy

1

(t)j; e

�t

jy

2

(t)j are in L

2

(�1; �) the fun
tion e

�t

jy

1

� y

2

j is also in L

2

(�1; �).

It follows that there exists a sequen
e of times �

�

! �1 as � !1 with

jy

1

(�

�

)� y

2

(�

�

)je

��

�

! 0: Putting in (4.2) � = �

�

and assuming � !1 we get

e

2��

V (y

1

(�)� y

2

(�)) � �2 "

Z

�

�1

e

2�t

jy

1

(t)� y

2

(t)j

2

dt � 0 : (4.3)

Take a regular n� n-matrix Q = Q

�

su
h that

Q

�

PQ =

0

B

B

B

B

B

�

�1

�1 0

+1

0

.

.

.

+1

1

C

C

C

C

C

A

and put y = Q

�

u

v

�

with u 2 R

2

; v 2 R

n�2

;

� y := u; 8 y 2 R

n

: Clearly that j� yj

2

= juj

2

: Sin
e Q

�1

y =

�

u

v

�

we have

jQ

�1

yj

2

= juj

2

+ jvj

2

andV (y) = y

�

Py = (u

�

; v

�

)Q

�

PQ

�

u

v

�

= �juj

2

+ jvj

2

:

It follows that

V (y) + 2j� yj

2

= �juj

2

+ jvj

2

+ 2juj

2

= juj

2

+ jvj

2

= jQ

�1

yj

2

� j� yj

2

; 8 y 2 R

n

:

Consider two arbitrary amenable solutions y

1

; y

2

of (4.3). It follows now that

V (y

1

(t)� y

2

(t)) � 0; 8 t � 0; and

2 j� (y

1

(�)� y

2

(�))j

2

� jQ

�1

(y

1

(�)� y

2

(�))j

2

� j� (y

1

(�)� y

2

(�))j

2

: (4.4)

If h and k are arbitrary 
onstants the amenable solutions y

1

(t� h); y

2

(t� k) 
an repla
e y

1

; y

2

in (4.4).

Thus, if 


1

; 


2

are amenable orbits of y

1

; y

2

then

2 j� p

1

� � p

2

j

2

� jQ

�1

(p

1

� p

2

)j

2

� j� p

1

� � p

2

j

2

8 p

1

; p

2

2 


1

; 


2

:

(4.5)

It follows now that � : A! �A is a homeomorphism of A onto �A: �



5 Lips
hitz manifolds and the extension pro
edure

Consider (3.3) under the assumptions of Theorem 4.1 and let

h : �A ! A (5.1)

be the inverse map of � : A ! �A; (4.1), where A is again the set of

amenable solutions.

It follows from (4.5) that

2 ju

1

� u

2

j

2

� jQ

�1

(h(u

1

)� h(u

2

))j

2

� ju

1

� u

2

j ;

8u

1

; u

2

2 �A : (5.2)

If y(�) is an amenable solution of (3.3) then u(t) := � y(t) is the solution

of the

2-dimensional redu
ed or observation ODE

_u = � f(h(u))

| {z }

=:g(u)

(f(y) = Ay +B�(Cy)): (5.3)

The redu
ed ve
tor �eld g is de�ned only on the 
losed set �A � E

�

=

R

2

,

sin
e h is de�ned only on �A: Can we extend h to a Lips
hitz 
ontinuous

map

~

h : E

�

=

R

2

! R

n

(Y

0

) ?

Assume for a moment that this is possible. Then it holds:

1) ~g := � (f(

~

h)) is a Lips
hitz ve
tor �eld on E

�

=

R

2

if f is Lips
hitz :

~g = � Æ f Æ

~

h:

It follows that all solutions of (3.2) exist and are unique. The observation

ODE (5.2) 
an be used for the re
onstru
tion of the set A of (3.3).

2) The set A of amenable solutions of (3.3) lies in the set

M := fy 2 R

n

jy =

~

H(u); u 2 R

2

g :

(Y

0

) (R

m

) (5.4)

Sin
e

~

h is Lips
hitz the set (5.4) is a 2-dimensional (m-dimensional) Lip-

s
hitz manifold. If A is the global attra
tor the set M attra
ts all orbits

of (3.3) from R

n

(Y

0

): In this 
aseM is 
alled the inertial manifold of (3.3)

([2℄ Foias et al; [7℄ Robinson) .



Theorem 5.1 ( Stein's extension theorem [11℄)

Let X be a 
losed subset of R

m

; H(= Y

0

) be a Hilbert spa
e, and h :

X ! H be a 
ontinuous fun
tion.

Then there is a 
ontinuous extension

~

h : R

m

! H and there exists a

K = K(m) su
h that if jh(x) � h(y)j � Cjx � yj;8x; y 2 X; then

j

~

h(x)�

~

h(y) � KCjx� yj;8x; y 2 R

m

:

Corollary 5.1 Under the 
onditions of Theorem 4.1 the redu
ed ve
tor

�eld (5.2) 
an be extended to a Lips
hitz ve
tor �eld in E

�

=

R

2

: Any

amenable solution y of the in�nite-dimensional ve
tor �eld

_y = Ay +B� in the phase spa
e Y

0


an be represented as y =

~

h(u(t));

where u(t) is the unique solution of the redu
ed equation (5.2) with

initial state u(0) = � y(0):

6 Constru
ting a redu
ed system from measurements

Suppose

_y = f(y) (6.1)

is a given (unknown) dissipative system in R

n

with attra
tor A:

Step 1: Choi
e of the linear part

Choose a number � > 0 and matri
es A;B and C of order n � n; n � 1

and 1� n, respe
tively, su
h that (A + �I;B) is stabilizable, and A + �I

has 2(m) eigenvalues with positive real part and n � 2 eigenvalues with

negative real part.

Step 2: Re
onstru
tion of the 
lass of nonlinearities

Cal
ulate on [0; T ℄ the linear semigroup S(t) = e

At

with A from Step 1.

Take an " < 0 (toleran
e), a natural number N and observe near the

attra
tor the solutions y

i

(�); i = 1; 2; : : : ; N; of (6.1) on [0; T ℄. Find for any

i = 1; 2; : : : ; N a solution �

i

2 L

1

(0; T ;R

n

) of the linear inequality

sup

t2[0;T ℄

jy

i

(t)� S(t)y

i

(0)�

Z

t

0

S(t� s)B�

i

(s)dsj < " : (6.2)

It follows that �

i

(t) � �(Cy

i

(t)) in the sense of L

2

(0; T ); where

_y

i

(t) = Ay

i

+B�(Cy

i

(t)) on [0; T ℄:



Determine two 
onstants �1 � �

1

< �

2

� +1 (�

2

< +1 if �

1

= �1

and �

1

> �1 if �

2

= +1) su
h that

�

1

[C(y

i

(t)� y

j

(t))℄

2

� [�

i

(t)� �

j

(t)℄ C [y

i

(t)� y

j

(t)℄

� �

2

[C(y

i

(t)� y

j

(t))℄

2

; i; j = 1; : : : ; N t 2 [0; T ℄ : (6.3)

Take two 
onstants �1 � �

1

< �

2

� +1 su
h that

�

1

[C(y

i

(t)� y

j

(t))℄

2

� [�

i

(t)� �

j

(t)℄ C [y

i

(t)� y

j

(t)℄

� �

2

[C (y

i

(t)� y

j

(t))℄

2

; i; j = 1; : : : ; N; t 2 [0; T ℄ :

Step 3: Graphi
 test of the frequen
y-domain / gap 
ondition

Compute the frequen
y-domain 
hara
teristi


�(i! � �) = C((i! � �)I �A)

�1

B and 
ompare with the 
ir
le

C[�

1

; �

2

℄ with �

1

< �

2

from Step 2 (Fig. 5).

C

�(i! � �)

C[�

1

; �

2

℄

��

�1

2

��

�1

1

Fig. 5

If there is no interse
tion between �(i! � �) and C[�

1

; �

2

℄ go to Step 4.

In other 
ase 
hange A;B;C or m and begin again with Step 1.

Step 4: Cal
ulation of a homeomorphism � : A ! �A

Find with A;B;C from Step 1 and �

1

< �

2

from Step 3 an n� n matrix

P = P

�

of the matrix inequality

2 y

�

P [(A + AI)y +B ℄ + (�

2

Cy �  ) ( � �

1

Cy) < 0 ;

8 y 2 R

n

; 8 2 R ; jyj + j j 6= 0: (6.4)



Su
h a solution exists by the frequen
y theorem and is 
omputable in a

�nite number of steps. Any solution P = P

�

of (6.3) has 2 negative and

n� 2 positive eigenvalues. De�ne a matrix Q = Q

�

through

Q

�

PQ =

0

B

B

B

B

B

�

�1

�1 0

+1

0

.

.

.

+1

1

C

C

C

C

C

A

: Then the proje
tion is � : R

n

! R

2

de�ned by � y = u; y 2 R

n

; u 2 R

2

; v 2 R

n�2

; s.th.

�

u

v

�

= Q

�1

y:

It follows from Theorem 4.1 that of A is the amenable set of (6.1) then

� : A ! �A is a homeomorphism.

Step 5: Determination of a redu
ed ODE for the full equation

Let � : A ! �A be the homeomorphism from Step 4. Determine a re-

du
ed 2-dimensional ODE _u = � f(

~

h(u))

| {z }

~g(u)

from the observations � y

i

(t);

where y

i

(t) are arbitrary solutions of (6.1) near the attra
tor and use 
on-

stru
tively the extension theorem of Stein to extend this ve
tor �eld from

the 
losed set �A � E

�

=

R

2

to a Lips
hitz ve
tor �eld on the whole E.

7 When is a given linear proje
tion a homeomorphism on the

attra
tor?

Suppose

_y = f(y) (7.1)

is on ODE in R

n

. A is the set of amenable solutions and � : R

n

! R

k

is a given linear proje
tion. Under what 
onditions is � : A ! �A a

homeomorphism?

Write (7.1) again in the form

_y = Ay +B� (�y) ; (7.2)

where A and B are n�n and n�m matri
es, and B� : R

n

! R

n

is de�ned

by B� (�y) := f(y)�Ay: Assume that f(0) = 0 and the solutions of (7.1)

exist on R

+

and are unique. Let K � R

n

be an invariant and absorving




one for (7.2) having the property

K \ fy 2 R

n

j�y = 0g = f0g : (7.3)

If (7.3) is satis�ed then � : A ! �A is a homeomorphism.

(H3)� There exists a k �m matrix M su
h that

0 � (�(y

1

� y

2

))

�

M [�(�y

1

)� �(�y

2

)℄ ; 8y

1

; y

2

2 R

n

:

De�ne the Hermitian form F

C

(y; �) := Re (y

�

�

�

M�); y 2 C

n

; � 2 C

m

;

and the transfer matrix �(i!) := (i!I � A)

�1

B:

Theorem 7.1 Suppose that (H3)� is satis�ed and there exists a Æ > 0

su
h that the following holds:

1) The pair (A + �I;B) is stabilizable ;

2) The matrix A + �I has k eigenvalues with positive real part and

n� k with negative real part ;

3) ReF

C

(�(i! � �)�; �) < 0; 8 � 2 C

m

; � 6= 0; 8! 2 R ;

4) �

�

B

�

�

�

M� � 0 ; 8 � 2 R

m

:

Then there exists a symmetri
 n � n matrix P having k negative and

n� k positive eigenvalues su
h that the following holds:

a) The k-dimensional 
one K := fy 2 R

n

jy

�

Py � 0g is positively

invariant for all solutions of (7.1) ;

b) K \ fy 2 R

n

j�y = 0g = f0g ;


) K absorbs A and, 
onsequently, � : A ! �A � R

k

is a homeo-

morphism .
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