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1 Feedback control systems

Suppose
y=r(y) (1.1)

with a vector function f: R" — R" (“parent flow") is given.
Then (1.1) can be written as feedback control system

y=Ay+ Bo (Cy(t)) (1.2)

where A, B and C' are arbitrary n x n matrices (B and C regular) and
¢(o) = B f(C~lo)—AC 'o],0 € R". Consider the more general system

y=Ay+ BE(t), £(t) = o(Cy(t), &) (1.3)

with the n X n,n X m and [ x m matrices A, B and C and the nonlinearity
¢ which can be smooth, piecewise smooth or a hysteresis function.
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Example 1.1 dry friction, elasto-plastic deformation (Fig. 1) O

Remark 1.1 (1.3) can also describe an infinite-dimensional system. Sup-
pose Y1 C Yy C Y_; are densely and continuously embedded Hilbert spaces
(rigged Hilbert space structure), Z and W are also Hilbert spaces,

AIYi-)Y_l, BIE%Y_I, CY1—>W
are bounded linear operators, ¢ : W — = is a nonlinearity, and the equation
y = Ay + B (Cy) (1.4)

is the state space realization model for well-posed input-output (measure-
ment) maps.




e ODEcase: Vi =Yy=Y =R", W=R, Z=R

e PDE (Boundary control system)

Yo = L2(0,1), Vi = W'2(0,1), Y., = Y*, A: Y, = Y4,

(Au,v); 1 = [ (Auw)(z)v(z)dz = — [ (auv, + buv)dz,

Yu,v e Wh(0,1)

==R, B:Z—Y , B=ad(x—1), g:R— R, a>0,b> 0 numbers

%:aum—bu, O<zr<l1,
ur(0,8) =0, ug(1,t) = g(w(?)) , u(-,0) = uo (1.5)

g(w(t)) = Cu(x,t) = fol c(z)u(x,t)dz, c € L*(0,1) .

e Functional differential equations (FDE’s or PDE’s with delay)

g(t) =Y Ayt +ri) + Bo(Cyy), =1 <1y < --- <1 <19 =0, (L6)
k=0

y(0)=h € H, yo=a € L*([-r,0]; H), H Hilbert space
y(-) - [-r,0] = H, 4:(0) =y(t+ 6) a.a. © € [—r,0]
A;:DA)CH—H,i=0,1,...,m, Yy = L*([-r,0; H) x H,
B e L (U, H), U Hilbert space
F :D(F) CYy— Yygiven by F({a, h}) == {a&, > 1o Ach(ri) + Bo(Car)}
D(F)={{a,h} € Yy|a:[—r,0] = H absolutely continuous,
& € L*([-r,0]; H), h = a(0) € D(A)} ODE in the skew-product Yy
2(t) = Az(t) + Bo(Cz(t)) = F(2(t)), 2(0) =2 € Y} (1.7)

({o,n} 48, ko = [2.((8), B(0))u dO + (h, k)

for {a, b}, {0, k} € Y
H=R":y= fi)r L(s)y(t + s)ds + Ary(t) + Asy(t —r) + bp(o(t)),
o(t)=cy(t)+ [2 g (s)y(t + s)ds, y(0) =h,yo=a,
with b and ¢ n-vectors, g € L*([—r,0]; R"),
I'e L*([-r,0]; R™"), A; and Ay n x n matrices,

w : R — R s.t. the generalized solutions exist




Some solution conceptions for (1.3)

1) Weak solutions in some Sobolev space

2) Classical solutions for differential inclusions

3) Filippov solutions, i.e. absolutely continuous functions y(-) which satisfy
(1.3) almost everywhere.

(H1) For any initial state (1.3) has exactly one Filippov solution on
0, 00).

2 The reconstruction principle and the cone condition

Let v = {y(t)|t > 0} be a semi-orbit of (1.3), IT the projection on some

plane E (Fig. 2).
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Fig. 2

How to choose a projection IT : R® — E = R? such that IT : v — IIv is
one-to-one and continuous in A 7

(H2) (cone condition) There exist a set S C R” and an n X n-matrix
P = P* having 2 negative and (n — 2) positive eigenvalues such that for
any two solutions y;(-), y2(+) of (1.3) with y;(t) € S,Vt > 0,7 = 1,2,
we have with V (y) = y* Py the inequality

V(y(t) —yo(t)) <0, V>0 (2.1)
[10] Smith, [2] Foias et al, [7] Robinson.




Geometrical interpretation of the cone condition for n = 3

Assume V (y) = y*Py is a quadratic form satisfying (2.1) along the so-
lutions of (1.3), K := {y|V(y) < 0} is a 2-dimensional cone, R*\ K is a
1-dimensional cone (Fig.3). Let [ be the direction of the main axis of R*\ K
with [* Pl > 0, F/ is the orthogonal to [ plane through the origin, IT is the
orthogonal projection on F.

Suppose that yi(+), y2(-) are two arbitrary distinct solutions of (1.3) in S,
e y1(t) # yat) Vit >0,u(t),y2(t) € S, YVt >0.From (2.1) we have
V(yl(t) — yg(t)) <0, Vit > 0, 1.e. yl(t) — yg(t) e K, YVt >D0.

Then

My (t) # Mys(t), Vt>0. (2.2)
Assume the opposite, i.e. assume that
Jtg > 0: [Ty (to) = Hya(to) - (2.3)

It follows from (2.3) that IT [y1(ty) — y2(to)] = 0, i.e. the point

y1(to) — y2(to) is projected under IT into 0. But then there exists a k # 0
such that yi(to) — y2(to) = kl. Consequently we have V' (kl) = k*I* Pl > 0,
a contradiction to the fact that V (y;(to) — y2(t)) < 0.

Fig. 3




3 Frequency-domain methods

Suppose A, B and C are matrices of order n X n,n x m and [ X n, re-
spectively, F'(z, &) is a Hermitian form on C" x C™, i.e. a quadratic form
which takes only real values. The pair (A, B) is called stabilizable if there
exists an n X m matrix D such that A + BD is Hurwitzian, i.e. has only
eigenvalues with negative real part.

Theorem 3.1 (Frequency theorem; Yakubovich, 1962; Kalman, 1963)
Let the pair (A, B) be stabilizable and det(iwl — A) # 0, Vw € R.

a) For the existence of a real symmetric n X n-matriz P satisfying the
Riccati inequality

2Rez*P(Ax 4+ BE) + F(x,£) < 0,
VeeC' VEeC”, |x|+ £ #0 (3.1)

it 1s necessary and sufficient that the frequency-domain condition

F((iwl — A)7'B¢,€) <0,
VE€eC", E4£0 YweR (3.2)

is satisfied.

b) A matriz P = P* satisfying (3.1) can be computed in a finite number
of steps.

Consider the system

y = Ay+ Bo(Cy(t)) , (3:3)

where A, B and C' are matrices of order n X n,n X 1 and 1 X n, respectively.
Introduce the transfer function x(z) = C(2I — A)"'B for z € C : det (21 —

A) #£0.

¢ : R — R satisfies the following condition:




(H3) There exist parameters p; < 0 < g such that

pa(or = 02)* < [p(01) = ¢(0)](01 — 02) < pa(01 — o)’
VO‘1,02 eR (34)

Remark 3.1 If ¢ is C' the condition (3.4) can be written in the following
way:

(H3)" There exist parameters p; < 0 < py such that

< ¢'(o) <py, VoeR (3.4)

Theorem 3.2 Suppose that for ¢ from (3.3) the condition (H3) is

satisfied and there exists a X > 0 such that the following holds:

1) The pair (A + A, B) is stabilizable ;

2) The matriz A+ X has ezactly two eigenvalues with
positive real part and (n — 2) with negative real part; }

3) Re [1+p1x(iw—A)] [1+pax(iw—A)]* >0, Vw € R;

Then there ezists an n Xn-matric P = P* having 2 negative and (n—2)

positive eigenvalues, and a number € > 0 such that with the function

V(y) = y* Py the inequality

%V(yl(t) —yo(t)) + AV (y1(t) — yo(t)) — ely1(t) — yg(t)|2, Vi >0

(3.5)

(Gap
condition)

(Squeezing property)
is satisfied for any two solutions yy(+),ya(+) of (3.3).

Proof of Theorem 3.2 Suppose yi(+), y2(+) are two arbitrary solutions of (3.3). Then y := y; — y» is
a solution of

y = Ay + By with ¢(t) := ¢(01(t)) — ¢(02(t)),
oi(t) = Cuplt).i = 1,2,
By assumption (H3) we have with 0 = 07 — 03 the inequality

o (t)? < Y(t)o(t) < ppo(t)?, ¥t >0. (3.6)




Because of 1) and 3) Theorem 3.1 is applicable with the Hermitian form
F(y,&) = Re[(u2Cy — &) (€ — 11 Cy)*] (Fig. 4). It follows that there exist an n x n-matrix
P = P* and a number ¢ > 0 such that

2y P[(A+ )y + BY] + (12Cy — ) (¥ — muCy) < — e[ |y|* + [¢]*]

VyeR", VY eR. (3.7)

For ¢ = 0 we get from (3.7) the inequality
2y *P(A+ M)y — ppz(Cy)® < —ely|®, Vy € R . (3.8)

Since ppo < 0 inequality (3.8) implies that
Y P(A+AN)y+y" (A+ MN)"Py<0, VyeR" y#0. (3.9)

From (3.9) it follows by Lyapunov’s theorem that the matrix P has exactly 2 negative and (n — 2)
positive eigenvalues, since A + AI has 2 eigenvalues with positive real part and (n — 2) eigenvalues with
negative real part.

Putting in (3.7) y = y1 — y2, ¥ = ¢(Cy1) — ¢(Cys) and using the fact that

[12C (51 = 2) = (6(Cy1) = &(C2))] [(¢(Cy1) = ¢(Cy2)) = Clyn —2)] > 0,
we derive from (3.7) the inequality

%V(yl(t) — 12(t)) + 22V (51 (t) — 12(t)) < —elya(t) — y2(t)P, VE > 0. u

Geometrical interpretation of the frequency-domain condition

Fig. 4

4 Amenable solutions and essential modes

Definition 4.1 (R. A. Smith, 1987) Suppose X > 0 is a number. A
solution y(-) of (1.3) is called amenable if there exists a number T € R
such that y(t) € S, Yt < 7, and [*__e*|y(t)]’dt < +oo.




Remark 4.1 If (1.3) has a compact attractor then all solutions inside the
attractor are amenable. []

Theorem 4.1 Suppose that the conditions of Theorem 3.2 are satisfied
with a parameter A > 0 and P = P* is the n X n matrix satisfying
(3.7) and having 2 negative and (n — 2) positive eigenvalues.

Choose a matriz () = Q* of order n X n such that

[ )
—1 0

Q"PQ = +1

0 -

\ +1)

and define the linear map I1 : R" — R? by [Ty := u where () = Q™ 'y

with u € R?,

v € R"2. Then if A is the set of amenable solution of (3.3) the map

M:A—TA (4.1)

s a homeomorphism, i.e. one-to-one and bicontinuous.

Definition 4.2 (0. Ladyzhenskaya [5]) Suppose that (1.4) has in the
(infinite-dimensional) phase-space Yy an attractor A and a finite-
dimensional projector I1 with the following property: For any two or-
bits v1,72 of the attractor A the condition 11y, = Il vy implies v = s.
Then we say that the number of essential or determining modes of (1.4)
for A is finite.

Corollary 4.1 Suppose that the conditions of Theorem 3.2 are satisfied

and (5.8) has a compact attractor A. Then the number of essential
modes for A is two.




Remark 4.2 In many cases in the system y = Ay + Bo(Cy) (1.4) we
have a symmetric A = A* : Y}, — Y_q. If the embedding Y7 C Y_; is
completely continuous then the operator A has a system of eigenfunctions
(modes) {w, } associated to eigenvalues {\;} by Aw; = A\jw;, w; € Y1, \; <
Air1, Ai = 400, (wj, wy) = 07 such that {w;} is a basis of Yy, i.e. any
element y can be written as y = > y,w;, > yj2 < 0.

Then Iy := (y1,y2) € R? or, more general, [Ty = (y,...,y;) € R' is a
finite-dimensional projection. Physically this means that the total energy
of an orbit is dominated by the energy of the first i modes. ]

Proof of Theorem 4.1 (See also Smith [10]) £[e2V (y —yo)] < —22e2 |y — po|?, VI <7,
if y1,yo € S. Integration on [©, 7] gives

T

TV (i (1) = pa(1) < POV (11(0) — 12(0)) — 25/ |y (£) — yo(t)]dt. (4.2)
S
Since ey, (t)], eM|yo(t)| are in L?(—o0, 7) the function e|y; — y»] is also in L?(—oo, 7).
It follows that there exists a sequence of times ©, — —oo as v — oo with
111(0,) — 12(0,)[e*®” — 0. Putting in (4.2) © = ©, and assuming v — oo we get

T

TV (5 (7) — (7)) < —22 / My, (1) — y(t)2dt < 0. (4.3)

—o0

Take a regular n x n-matrix () = Q* such that
-1
-1 0
Q*PQ = +1 and put y = Q(") with u € R?,v € R* 2,
0 .
+1
My :=u,Vy € R". Clearly that [[Ty|* = |u[%. Since Q7'y = () we have
Q7"y? = [uf’ + [v? andV (y) = y*Py = (u*,v*)Q"PQ(;) = —|ul> + |v]*.
It follows that

V(y) +2y)* = —[ul* + v + 2[u|* = |[u]* + o]
= |Q 'y > |Hy|*, VyeR".

Consider two arbitrary amenable solutions y;, y» of (4.3). It follows now that
V(yi(t) — y2(t)) <0, V¢ >0, and

2T (y2(7) — (7)) * 2 1Q " (31(7) — ()" = T (y2(7) — (7)) - (4.4)

If h and k are arbitrary constants the amenable solutions y; (t — h), y2(t — k) can replace yy, y, in (4.4).
Thus, if v, y9 are amenable orbits of 3, 5 then

2 py — ol > 1Q (p1 — po)|* > [ py — Mo vV p1, 02 € V1, Yo
(4.5)

It follows now that II : A — II A is a homeomorphism of A onto II A. [ |




5 Lipschitz manifolds and the extension procedure

Consider (3.3) under the assumptions of Theorem 4.1 and let

h:IIA— A (5.1)

be the inverse map of IT : A — I1.A, (4.1), where A is again the set of
amenable solutions.
It follows from (4.5) that

2w — uol® > Q7 (h(ur) — h(u2)))* > |uy — usf |
Vu,uy € ITA. (5.2)

If y(-) is an amenable solution of (3.3) then wu(t) := Il y(¢) is the solution
of the

2-dimensional reduced or observation ODE

w=Ilf(h(u)  (f(y) =Ay+ Bo(Cy)). (5.3)

=:g(u)
The reduced vector field g is defined only on the closed set 1A C E = R?,
since h is defined only on II.A. Can we extend h to a Lipschitz continuous
map i
h:E~R* = R"(Yy)?
Assume for a moment that this is possible. Then it holds:
1) § := I (f(h)) is a Lipschitz vector field on E = R? if f is Lipschitz

g=Iofoh.

It follows that all solutions of (3.2) exist and are unique. The observation
ODE (5.2) can be used for the reconstruction of the set A of (3.3).

2) The set A of amenable solutions of (3.3) lies in the set

M :={y e R"|y = H(u), u € R?} .
(Yo) (R™) (5.4)

Since A is Lipschitz the set (5.4) is a 2-dimensional (m-dimensional) Lip-
schitz manifold. If A is the global attractor the set M attracts all orbits
of (3.3) from R"(Y}). In this case M is called the inertial manifold of (3.3)
(|2] Foias et al; [7] Robinson) .




Theorem 5.1 ( Stein’s extension theorem [11])

Let X be a closed subset of R™, H(=Yy) be a Hilbert space, and h
X — H be a continuous function.

Then there is a continuous extension h : R™ — H and there exists a

K = K(m) such that if |h(x) — h(y)| < Clx —y|,Vx,y € X, then

[h(x) = h(y) < KClz —y|,V 2,y € R™.

Corollary 5.1 Under the conditions of Theorem 4.1 the reduced vector
field (5.2) can be extended to a Lipschitz vector field in E = R?. Any
amenable solution y of the infinite-dimensional vector field

iy = Ay + B¢ in the phase space Yy can be represented as y = h(u(t)),
where u(t) is the unique solution of the reduced equation (5.2) with
initial state u(0) = I y(0).

6 Constructing a reduced system from measurements

Suppose
y=r(y) (6.1)

is a given (unknown) dissipative system in R" with attractor A.

Step 1. Choice of the linear part

Choose a number A > 0 and matrices A, B and C of order n X n,n x 1
and 1 x n, respectively, such that (A + A\I, B) is stabilizable, and A + AT
has 2(m) eigenvalues with positive real part and n — 2 eigenvalues with
negative real part.

Step 2: Reconstruction of the class of nonlinearities

Calculate on [0, 7] the linear semigroup S(t) = e* with A from Step 1.
Take an ¢ < 0 (tolerance), a natural number N and observe near the
attractor the solutions y;(+),i =1,2,..., N, of (6.1) on [0,T]. Find for any
i=1,2,..., N asolution ¢; € L>®(0,T;R") of the linear inequality

tsg% lyi(t) — S(t)y;(0) — /OtS(t — s)Bo;(s)ds| < €. (6.2)

It follows that ¢;(t) =~ ¢(Cy;(t)) in the sense of L*(0,T), where
yi(t) = Ay, + Bo(Cy;(t)) on [0, T1.




Determine two constants —oo < py < pe < 400 (pg < 400 if p; = —o0
and g1 > —oo if g = +00) such that

i [Clyi(t) — y; () < [0i(t) — ¢;(8)] C [yilt) — y;(t)]
< w[Cly(t) —y;O)*, i,j=1,...,N te€[0,T]. (6.3)

Take two constants —oo < py < po < 400 such that

p1 [Cyi(t) — i ()] < [di(t) — ¢;(1)] C [yilt) — (L))
< wo[C(yi(t) —y;, () 4,5 =1,...,N, t € [0,T] .

Step 3. Graphic test of the frequency-domain / gap condition
Compute the frequency-domain characteristic

X(iw — A) = C((iw — A\)I — A)"'B and compare with the circle
Clp1, po] with uy < po from Step 2 (Fig. 5).

Fig. 5

If there is no intersection between x(iw — A) and C|uq, 2] go to Step 4.
In other case change A, B, C' or m and begin again with Step 1.

Step 4: Calculation of a homeomorphism IT: A —I1.A
Find with A, B, C from Step 1 and p1 < po from Step 3 an n X n matrix
P = P* of the matrix inequality

2y"P[(A+ Ay + BY| + (12Cy — ¢) (v — uCy) <0,
VyeR", Vo € R [y + [¢] #0. (6.4)




Such a solution exists by the frequency theorem and is computable in a
finite number of steps. Any solution P = P* of (6.3) has 2 negative and
n — 2 positive eigenvalues. Define a matrix () = (* through

& \
—1 0
Q*PQ = +1 . Then the projection is IT : R* — R?
0

\ ey

defined by Ty = u,y € R",u € R, v € R"2, s.th. (!) =Q'v.
It follows from Theorem 4.1 that of A is the amenable set of (6.1) then
II: A— IIA is a homeomorphism.

Step 5. Determination of a reduced ODE for the full equation

Let IT : A — TIA be the homeomorphism from Step 4. Determine a re-

duced 2-dimensional ODE u = II f(h(u)) from the observations ITy;(t),
N —

g(u)
where y;(t) are arbitrary solutions of (6.1) near the attractor and use con-
structively the extension theorem of Stein to extend this vector field from

the closed set [LA C E = R? to a Lipschitz vector field on the whole E.

7 When is a given linear projection a homeomorphism on the
attractor?

Suppose

y = f(y) (7.1)

is on ODE in R”. A is the set of amenable solutions and II : R* — R*
is a given linear projection. Under what conditions is IT : A — IIA a
homeomorphism?

Write (7.1) again in the form

y=Ay+ Bo(Ily) (7.2)

where A and B are n xn and n X m matrices, and B¢ : R” — R"” is defined
by B¢ (Ily) := f(y) — Ay. Assume that f(0) = 0 and the solutions of (7.1)

exist on Ry and are unique. Let K C R"” be an invariant and absorving




cone for (7.2) having the property
Kn{y eR"|lly =0} = {0}. (7.3)
If (7.3) is satisfied then IT : A — I1.A is a homeomorphism.

(H3)” There exists a k x m matrix M such that

0 < (I(y1 — y2))" M|od(Ily1) — ¢(My2)] ,  Yyr,y2 € R".

Define the Hermitian form Fg(y,§) := Re (y* [I*M¢),y € C*, £ € C™,
and the transfer matrix y(iw) = (iwl — A)™1B.

Theorem 7.1 Suppose that (H3)” is satisfied and there exists a § > 0
such that the following holds:

1) The pair (A+ X, B) is stabilizable ;

2) The matriz A + Al has k eigenvalues with positive real part and
n — k with negative real part ;

3) Re Fe(x(iw — N)E,€) <0, VE€C™E#0, VweR;
4) &BIITTME >0, VEER™.

Then there exists a symmetric n X n matrix P having k negative and
n — k positive ergenvalues such that the following holds:

a) The k-dimensional cone K = {y € R"|y*Py < 0} is positively
invariant for all solutions of (7.1) ;

b) KN{y e R"|lly =0} = {0} ;

¢) K absorbs A and, consequently, 11 : A — 1A C R* is a homeo-
morphism .
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