Reconstructing attractors of infinite-dimensional dynamical systems from low-dimensional projections

H. Kantz and V. Reitmann Max Planck Institute for the Physics of Complex Systems Dresden, Germany

Contents:

- 1) Feedback control systems
- 2) The reconstruction principle and the cone condition
- 3) Frequency-domain methods
- 4) Amenable solutions and essential modes
- 5) Lipschitz manifolds and the extension procedure
- 6) Constructing a reduced system from measurements
- 7) When is a given linear projection a homeomorphism on the attractor?

http://www.vreitmann.de

Supported by the DFG-Schwerpunktprogramm 1114: Mathematical methods for time series analysis and digital image processing

1 Feedback control systems

Suppose

$$\dot{y} = f(y) \tag{1.1}$$

with a vector function $f : \mathbb{R}^n \to \mathbb{R}^n$ ("parent flow") is given. Then (1.1) can be written as *feedback control system*

$$\dot{y} = Ay + B\phi \left(Cy(t) \right) \,, \tag{1.2}$$

where A, B and C are arbitrary $n \times n$ matrices (B and C regular) and $\phi(\sigma) = B^{-1}[f(C^{-1}\sigma) - AC^{-1}\sigma], \sigma \in \mathbb{R}^n$. Consider the more general system

$$\dot{y} = Ay + B\xi(t) , \ \xi(t) = \phi(Cy(t), \xi_0)$$
 (1.3)

with the $n \times n, n \times m$ and $l \times m$ matrices A, B and C and the nonlinearity ϕ which can be smooth, piecewise smooth or a hysteresis function.

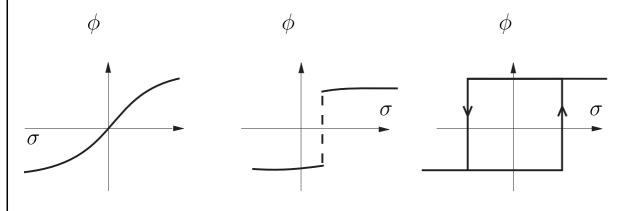


Fig. 1

Example 1.1 dry friction, elasto-plastic deformation (Fig. 1) \Box **Remark 1.1** (1.3) can also describe an infinite-dimensional system. Sup-

pose $Y_1 \subset Y_0 \subset Y_{-1}$ are densely and continuously embedded Hilbert spaces (rigged Hilbert space structure), Z and W are also Hilbert spaces,

 $A:Y_1\to Y_{-1}\;,\quad B:\Xi\to Y_{-1}\;,\quad C:Y_1\to W$

are bounded linear operators, $\phi: W \to \Xi$ is a nonlinearity, and the equation

$$\dot{y} = Ay + B\phi\left(Cy\right) \tag{1.4}$$

is the *state space realization model* for well-posed input-output (measurement) maps.

• ODE case:
$$Y_1 = Y_0 = Y_{-1} = \mathbb{R}^n$$
, $W = \mathbb{R}^s$, $\Xi = \mathbb{R}^r$
• PDE (Boundary control system)
 $Y_0 = L^2(0, 1), Y_1 = W^{1,2}(0, 1), Y_{-1} = Y^*, A : Y_1 \to Y_{-1}, (Au, v)_{1,-1} = \int_0^1 (Au)(x)v(x)dx = -\int_0^1 (au_xv_x + bu v)dx, \forall u, v \in W^{1,2}(0, 1)$
 $\Xi = \mathbb{R}, B : \Xi \to Y_{-1}, B = a\delta(x - 1), g : \mathbb{R} \to \mathbb{R}, a > 0, b > 0$ numbers
 $\frac{\partial m}{\partial t} = au_{xx} - bu, 0 < x < 1, u_{x}(0, t) = 0, u_{x}(1, t) = g(w(t)), u(\cdot, 0) = u_{0} g(w(t)) = Cu(x, t) = \int_0^1 c(x)u(x, t)dx, c \in L^2(0, 1).$
• Functional differential equations (FDE's or PDE's with delay)
 $\dot{y}(t) = \sum_{k=0}^m A_k y(t + r_k) + B\phi(Cy_t), -r \le r_m < \dots < r_1 < r_0 = 0, (1.6)$
 $y(0) = h \in H, y_0 = \alpha \in L^2([-r, 0]; H), H$ Hilbert space
 $y_i(\cdot) : [-r, 0] \to H, y_i(\Theta) = y(t + \Theta)$ a.a. $\Theta \in [-r, 0]$
 $A_i : \mathcal{D}(A_i) \subset H \to H, i = 0, 1, \dots, m, Y_0 = L^2([-r, 0]; H) \times H,$
 $B \in \mathcal{L}(U, H), U$ Hilbert space
 $F : \mathcal{D}(F) \subset Y_0 \to Y_0$ given by $F(\{\alpha, h\}) := \{\dot{\alpha}, \sum_{k=0}^m A_k h(r_k) + B\phi(C\alpha)\}$
 $\mathcal{D}(F) = \{\{\alpha, h\} \in Y_0 \mid \alpha : [-r, 0] \to H$ absolutely continuous,
 $\dot{\alpha} \in L^2([-r, 0]; H), h = \alpha(0) \in \mathcal{D}(A)\}$ ODE in the *skew-product* Y_0
 $\dot{z}(t) = \bar{A}z(t) + \bar{B}\phi(\bar{C}z(t)) \equiv F(z(t)), z(0) = z_0 \in Y_0$ (1.7)
 $(\{\alpha, h\}, \{\beta, k\})_0 := \int_{-r}^0 r(s)y(t + s)ds + A_1y(t) + A_2y(t - r) + b\varphi(\sigma(t)), \sigma(t) = c^*y(t) + \int_{-r}^0 g^*(s)y(t + s)ds + A_1y(t) + A_2y(t - r) + b\varphi(\sigma(t)), \sigma(t) = c^*y(t) + \int_{-r}^0 g^*(s)y(t + s)ds + M_1y(t) + A_2y(t - r) + b\varphi(\sigma(t)), \sigma(t) = c^*y(t) + \int_{-r}^0 g^*(s)y(t + s)ds + M_1y(t) + A_2y(t - r) + b\varphi(\sigma(t)), \sigma(t) = c^*y(t) + \int_{-r}^0 g^*(s)y(t + s)ds + M_1y(t) + A_2y(t - r) + b\varphi(\sigma(t)), \sigma(t) = c^*y(t) + \int_{-r}^0 g^*(s)y(t + s)ds + M_1y(t) + A_2y(t - r) + b\varphi(\sigma(t)), \sigma(t) = c^*y(t) + \int_{-r}^0 g^*(s)y(t + s)ds + M_1y(t) + A_2y(t - r) + b\varphi(\sigma(t)), \sigma(t) = c^*y(t) + \int_{-r}^0 g^*(s)y(t + s)ds + M_1y(t) + A_2y(t - r) + b\varphi(\sigma(t)), \sigma(t) = c^*y(t) + \int_{-r}^0 g^*(s)y(t + s)ds + M_1y(t) + A_2y(t - r) + b\varphi(\sigma(t)), \sigma(t) = c^*y(t) + \int_{-r}^0 g^*(s)y(t + s)ds + M_1y(t) + A_2y(t - r) + b\varphi(\sigma(t)), \sigma(t) = c^*(2([-r, 0]; \mathbb{R}^n), A_1$ and $A_2 n \times n$ mat

Some solution conceptions for (1.3)

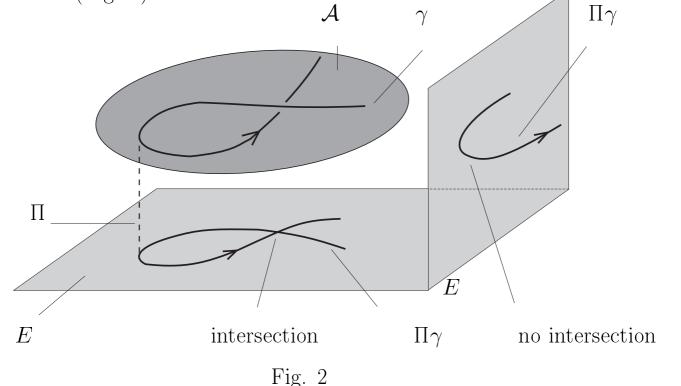
1) Weak solutions in some Sobolev space

- 2) Classical solutions for differential inclusions
- 3) Filippov solutions, i.e. absolutely continuous functions $y(\cdot)$ which satisfy
- (1.3) almost everywhere.

(H1) For any initial state (1.3) has exactly one Filippov solution on $[0,\infty)$.

2 The reconstruction principle and the cone condition

Let $\gamma = \{y(t) | t \ge 0\}$ be a semi-orbit of (1.3), Π the projection on some plane E (Fig. 2).



How to choose a projection $\Pi : \mathbb{R}^3 \to E \cong \mathbb{R}^2$ such that $\Pi : \gamma \to \Pi \gamma$ is one-to-one and continuous in \mathcal{A} ?

(H2) (cone condition) There exist a set $S \subset \mathbb{R}^n$ and an $n \times n$ -matrix $P = P^*$ having 2 negative and (n-2) positive eigenvalues such that for any two solutions $y_1(\cdot), y_2(\cdot)$ of (1.3) with $y_i(t) \in S, \forall t \ge 0, i = 1, 2$, we have with $V(y) = y^* P y$ the inequality

$$V(y_1(t) - y_2(t)) \le 0, \quad \forall t \ge 0$$
 (2.1)

[10] Smith, [2] Foias et al, [7] Robinson.

Geometrical interpretation of the cone condition for n = 3

Assume $V(y) = y^* P y$ is a quadratic form satisfying (2.1) along the solutions of (1.3), $K := \{y | V(y) \leq 0\}$ is a 2-dimensional cone, $\mathbb{R}^3 \setminus K$ is a 1-dimensional cone (Fig.3). Let l be the direction of the main axis of $\mathbb{R}^3 \setminus K$ with $l^* P l > 0$, E is the orthogonal to l plane through the origin, Π is the orthogonal projection on E.

Suppose that $y_1(\cdot), y_2(\cdot)$ are two arbitrary distinct solutions of (1.3) in S, i.e. $y_1(t) \neq y_2(t) \quad \forall t \geq 0, y_1(t), y_2(t) \in S, \quad \forall t \geq 0$. From (2.1) we have $V(y_1(t) - y_2(t)) \leq 0, \ \forall t \geq 0$, i.e. $y_1(t) - y_2(t) \in K, \quad \forall t \geq 0$. Then

$$\Pi y_1(t) \neq \Pi y_2(t), \quad \forall t \ge 0.$$
(2.2)

Assume the opposite, i.e. assume that

$$\exists t_0 \ge 0 : \Pi y_1(t_0) = \Pi y_2(t_0) .$$
(2.3)

It follows from (2.3) that $\Pi [y_1(t_0) - y_2(t_0)] = 0$, i.e. the point $y_1(t_0) - y_2(t_0)$ is projected under Π into 0. But then there exists a $k \neq 0$ such that $y_1(t_0) - y_2(t_0) = kl$. Consequently we have $V(kl) = k^2 l^* Pl > 0$, a contradiction to the fact that $V(y_1(t_0) - y_2(t_0)) \leq 0$.

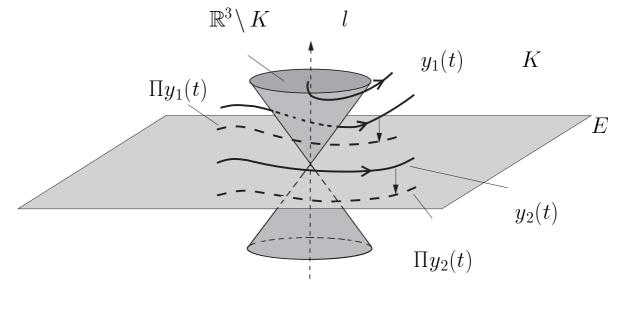


Fig. 3

3 Frequency-domain methods

Suppose A, B and C are matrices of order $n \times n, n \times m$ and $l \times n$, respectively, $F(x, \xi)$ is a *Hermitian form* on $\mathbb{C}^n \times \mathbb{C}^m$, i.e. a quadratic form which takes only real values. The pair (A, B) is called *stabilizable* if there exists an $n \times m$ matrix D such that A + BD is Hurwitzian, i.e. has only eigenvalues with negative real part.

Theorem 3.1 (Frequency theorem; Yakubovich, 1962; Kalman, 1963) Let the pair (A, B) be stabilizable and $det(i\omega I - A) \neq 0, \forall \omega \in \mathbb{R}$.

a) For the existence of a real symmetric $n \times n$ -matrix P satisfying the Riccati inequality

$$2\operatorname{Re} x^* P(Ax + B\xi) + F(x,\xi) < 0,$$

$$\forall x \in \mathbb{C}^n \quad \forall \xi \in \mathbb{C}^m, |x| + |\xi| \neq 0$$
(3.1)

it is necessary and sufficient that the frequency-domain condition

$$F((i\omega I - A)^{-1}B\,\xi,\xi) < 0,$$

$$\forall \,\xi \in \mathbb{C}^m, \xi \neq 0 \quad \forall \,\omega \in \mathbb{R}$$
(3.2)

is satisfied.

b) A matrix $P = P^*$ satisfying (3.1) can be computed in a finite number of steps.

Consider the system

$$\dot{y} = Ay + B\phi(Cy(t)) , \qquad (3.3)$$

where A, B and C are matrices of order $n \times n, n \times 1$ and $1 \times n$, respectively. Introduce the *transfer function* $\chi(z) = C(zI - A)^{-1}B$ for $z \in \mathbb{C}$: det $(zI - A) \neq 0$. $\phi : \mathbb{R} \to \mathbb{R}$ satisfies the following condition: (H3) There exist parameters $\mu_1 < 0 < \mu_2$ such that

$$\mu_1(\sigma_1 - \sigma_2)^2 \le [\phi(\sigma_1) - \phi(\sigma_2)](\sigma_1 - \sigma_2) \le \mu_2(\sigma_1 - \sigma_2)^2 \forall \sigma_1, \sigma_2 \in \mathbb{R}$$
(3.4)

Remark 3.1 If ϕ is C^1 the condition (3.4) can be written in the following way:

(H3)' There exist parameters $\mu_1 < 0 < \mu_2$ such that $\mu_1 \le \phi'(\sigma) \le \mu_2, \quad \forall \sigma \in \mathbb{R}$

Theorem 3.2 Suppose that for ϕ from (3.3) the condition (H3) is satisfied and there exists a $\lambda > 0$ such that the following holds:

1) The pair $(A + \lambda I, B)$ is stabilizable ;

2) The matrix $A + \lambda I$ has exactly two eigenvalues with positive real part and (n - 2) with negative real part; 3) Re $[1+\mu_1\chi(i\omega-\lambda)] [1+\mu_2\chi(i\omega-\lambda)]^* > 0, \forall \omega \in \mathbb{R};$ (Gap condition) Then there exists an $n \times n$ -matrix $P = P^*$ having 2 negative and (n-2)positive eigenvalues, and a number $\varepsilon > 0$ such that with the function $V(y) = y^*Py$ the inequality

$$\frac{d}{dt}V(y_1(t) - y_2(t)) + \lambda V(y_1(t) - y_2(t)) - \varepsilon |y_1(t) - y_2(t)|^2, \ \forall t \ge 0$$
(3.5)

(Squeezing property)

(3.4)'

is satisfied for any two solutions $y_1(\cdot), y_2(\cdot)$ of (3.3).

Proof of Theorem 3.2 Suppose $y_1(\cdot), y_2(\cdot)$ are two arbitrary solutions of (3.3). Then $y := y_1 - y_2$ is a solution of

$$\dot{y} = Ay + B\psi$$
 with $\psi(t) := \phi(\sigma_1(t)) - \phi(\sigma_2(t)),$

 $\sigma_i(t) := Cy_i(t), i = 1, 2.$ By assumption (**H3**) we have with $\sigma = \sigma_1 - \sigma_2$ the inequality

$$\mu_1 \sigma(t)^2 \le \psi(t) \sigma(t) \le \mu_2 \sigma(t)^2, \ \forall t \ge 0 .$$
(3.6)

Because of 1) and 3) Theorem 3.1 is applicable with the Hermitian form $F(y,\xi) = \operatorname{Re}\left[(\mu_2 Cy - \xi)(\xi - \mu_1 Cy)^*\right]$ (Fig. 4). It follows that there exist an $n \times n$ -matrix $P = P^*$ and a number $\varepsilon > 0$ such that

$$2 y^* P[(A + \lambda I)y + B\psi] + (\mu_2 Cy - \psi)(\psi - \mu_1 Cy) \leq -\varepsilon [|y|^2 + |\psi|^2]$$

$$\forall y \in \mathbb{R}^n, \ \forall \psi \in \mathbb{R}.$$
(3.7)

For $\psi = 0$ we get from (3.7) the inequality

$$2y^*P(A+\lambda I)y - \mu_1\mu_2(Cy)^2 \le -\varepsilon|y|^2, \ \forall y \in \mathbb{R}^n .$$
(3.8)

Since $\mu_1\mu_2 < 0$ inequality (3.8) implies that

$$y^* P(A + \lambda I)y + y^* (A + \lambda I)^* Py < 0, \ \forall y \in \mathbb{R}^n \quad y \neq 0.$$

$$(3.9)$$

From (3.9) it follows by Lyapunov's theorem that the matrix P has exactly 2 negative and (n-2) positive eigenvalues, since $A + \lambda I$ has 2 eigenvalues with positive real part and (n-2) eigenvalues with negative real part.

Putting in (3.7) $y = y_1 - y_2$, $\psi = \phi(Cy_1) - \phi(Cy_2)$ and using the fact that

$$\left[\mu_2 C(y_1 - y_2) - (\phi(Cy_1) - \phi(Cy_2))\right] \left[(\phi(Cy_1) - \phi(Cy_2)) - \mu_1 C(y_1 - y_2)\right] \ge 0 ,$$

we derive from (3.7) the inequality

$$\frac{d}{dt}V(y_1(t) - y_2(t)) + 2\lambda V(y_1(t) - y_2(t)) \le -\varepsilon |y_1(t) - y_2(t)|^2, \ \forall t \ge 0.$$

Geometrical interpretation of the frequency-domain condition

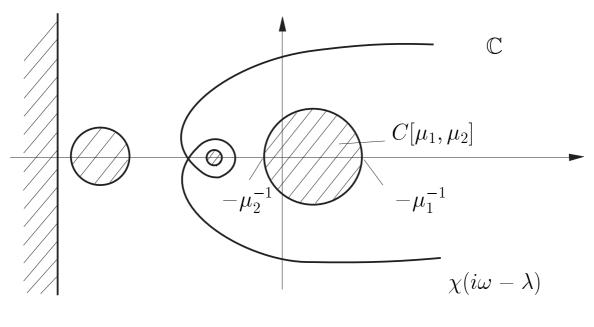


Fig. 4

4 Amenable solutions and essential modes

Definition 4.1 (*R. A. Smith, 1987*) Suppose $\lambda > 0$ is a number. A solution $y(\cdot)$ of (1.3) is called amenable if there exists a number $\tau \in \mathbb{R}$ such that $y(t) \in S$, $\forall t \leq \tau$, and $\int_{-\infty}^{\tau} e^{2\lambda t} |y(t)|^2 dt < +\infty$.

Remark 4.1 If (1.3) has a compact attractor then all solutions inside the attractor are amenable.

Theorem 4.1 Suppose that the conditions of Theorem 3.2 are satisfied with a parameter $\lambda > 0$ and $P = P^*$ is the $n \times n$ matrix satisfying (3.7) and having 2 negative and (n-2) positive eigenvalues. Choose a matrix $Q = Q^*$ of order $n \times n$ such that

$$Q^*PQ = \begin{pmatrix} -1 & & & \\ & -1 & & 0 \\ & & +1 & \\ 0 & & \ddots & \\ & & & +1 \end{pmatrix}$$

and define the linear map $\Pi : \mathbb{R}^n \to \mathbb{R}^2$ by $\Pi y := u$ where $\binom{u}{v} = Q^{-1}y$ with $u \in \mathbb{R}^2$, $v \in \mathbb{R}^{n-2}$. Then if \mathcal{A} is the set of amenable solution of (3.3) the map $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ (4.1)

is a homeomorphism, i.e. one-to-one and bicontinuous.

Definition 4.2 (O. Ladyzhenskaya [5]) Suppose that (1.4) has in the (infinite-dimensional) phase-space Y_0 an attractor \mathcal{A} and a finite-dimensional projector Π with the following property: For any two orbits γ_1, γ_2 of the attractor \mathcal{A} the condition $\Pi \gamma_1 = \Pi \gamma_2$ implies $\gamma_1 = \gamma_2$. Then we say that the number of essential or determining modes of (1.4) for \mathcal{A} is finite.

Corollary 4.1 Suppose that the conditions of Theorem 3.2 are satisfied and (3.3) has a compact attractor \mathcal{A} . Then the number of essential modes for \mathcal{A} is two. **Remark 4.2** In many cases in the system $\dot{y} = Ay + B\phi(Cy)$ (1.4) we have a symmetric $A = A^* : Y_1 \to Y_{-1}$. If the embedding $Y_1 \subset Y_{-1}$ is completely continuous then the operator A has a system of eigenfunctions (modes) $\{w_j\}$ associated to eigenvalues $\{\lambda_j\}$ by $Aw_j = \lambda_j w_j, w_j \in Y_1, \lambda_i <$ $\lambda_{i+1}, \lambda_i \to +\infty, (w_j, w_k) = \delta_j^k$ such that $\{w_j\}$ is a basis of Y_1 , i.e. any element y can be written as $y = \sum y_j w_j, \sum y_j^2 < \infty$.

Then $\Pi y := (y_1, y_2) \in \mathbb{R}^2$ or, more general, $\Pi y = (y_1, \ldots, y_i) \in \mathbb{R}^i$ is a finite-dimensional projection. Physically this means that the *total energy* of an orbit is dominated by the energy of the first i modes. \Box

Proof of Theorem 4.1 (See also Smith [10]) $\frac{d}{dt}[e^{2\lambda t}V(y_1-y_2)] \leq -2\varepsilon e^{2\lambda t}|y_1-y_2|^2, \forall t \leq \tau$, if $y_1, y_2 \in S$. Integration on $[\Theta, \tau]$ gives

$$e^{2\lambda\tau}V(y_1(\tau) - y_2(\tau)) \le e^{2\lambda\Theta}V(y_1(\Theta) - y_2(\Theta)) - 2\varepsilon \int_{\Theta}^{\tau} e^{2\lambda t}|y_1(t) - y_2(t)|^2 dt.$$
(4.2)

Since $e^{\lambda t}|y_1(t)|, e^{\lambda t}|y_2(t)|$ are in $L^2(-\infty, \tau)$ the function $e^{\lambda t}|y_1 - y_2|$ is also in $L^2(-\infty, \tau)$. It follows that there exists a sequence of times $\Theta_{\nu} \to -\infty$ as $\nu \to \infty$ with $|y_1(\Theta_{\nu}) - y_2(\Theta_{\nu})|e^{\lambda\Theta_{\nu}} \to 0$. Putting in (4.2) $\Theta = \Theta_{\nu}$ and assuming $\nu \to \infty$ we get

$$e^{2\lambda\tau}V(y_1(\tau) - y_2(\tau)) \le -2\varepsilon \int_{-\infty}^{\tau} e^{2\lambda t} |y_1(t) - y_2(t)|^2 dt \le 0.$$
(4.3)

Take a regular $n \times n$ -matrix $Q = Q^*$ such that

$$Q^*PQ = \begin{pmatrix} -1 & & & \\ & -1 & & & \\ & & +1 & & \\ 0 & & \ddots & \\ & & & +1 \end{pmatrix} \text{ and put } y = Q\binom{u}{v} \text{ with } u \in \mathbb{R}^2, v \in \mathbb{R}^{n-2},$$

 $\begin{array}{l} \Pi \; y := u, \forall \; y \in \mathbb{R}^n. \; \text{Clearly that} \; |\Pi \; y|^2 = |u|^2. \; \text{Since} \; Q^{-1}y = \binom{u}{v} \; \text{we have} \\ |Q^{-1}y|^2 = |u|^2 + |v|^2 \; \text{and} V(y) = y^* Py = (u^*, v^*) Q^* PQ \binom{u}{v} = -|u|^2 + |v|^2. \\ \text{It follows that} \end{array}$

$$V(y) + 2|\Pi y|^2 = -|u|^2 + |v|^2 + 2|u|^2 = |u|^2 + |v|^2$$

= $|Q^{-1}y|^2 \ge |\Pi y|^2$, $\forall y \in \mathbb{R}^n$.

Consider two arbitrary amenable solutions y_1, y_2 of (4.3). It follows now that $V(y_1(t) - y_2(t)) \leq 0, \forall t \geq 0$, and

$$2 |\Pi (y_1(\tau) - y_2(\tau))|^2 \ge |Q^{-1}(y_1(\tau) - y_2(\tau))|^2 \ge |\Pi (y_1(\tau) - y_2(\tau))|^2.$$
(4.4)

If h and k are arbitrary constants the amenable solutions $y_1(t-h), y_2(t-k)$ can replace y_1, y_2 in (4.4). Thus, if γ_1, γ_2 are amenable orbits of y_1, y_2 then

$$2 |\Pi p_1 - \Pi p_2|^2 \ge |Q^{-1}(p_1 - p_2)|^2 \ge |\Pi p_1 - \Pi p_2|^2 \qquad \forall p_1, p_2 \in \gamma_1, \gamma_2.$$
(4.5)

It follows now that $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ is a homeomorphism of \mathcal{A} onto $\Pi \mathcal{A}$.

5 Lipschitz manifolds and the extension procedure

Consider (3.3) under the assumptions of Theorem 4.1 and let

$$h: \Pi \mathcal{A} \to \mathcal{A} \tag{5.1}$$

be the inverse map of $\Pi : \mathcal{A} \to \Pi \mathcal{A}$, (4.1), where \mathcal{A} is again the set of amenable solutions.

It follows from (4.5) that

$$2 |u_1 - u_2|^2 \ge |Q^{-1}(h(u_1) - h(u_2))|^2 \ge |u_1 - u_2| ,$$

$$\forall u_1, u_2 \in \Pi \mathcal{A} .$$
 (5.2)

If $y(\cdot)$ is an amenable solution of (3.3) then $u(t) := \prod y(t)$ is the solution of the

2-dimensional reduced or observation ODE

$$\dot{u} = \underbrace{\prod f(h(u))}_{=:g(u)} \qquad (f(y) = Ay + B\phi(Cy)). \tag{5.3}$$

The reduced vector field g is defined only on the closed set $\Pi \mathcal{A} \subset E \cong \mathbb{R}^2$, since h is defined only on $\Pi \mathcal{A}$. Can we extend h to a Lipschitz continuous map

$$\tilde{h}: E \cong \mathbb{R}^2 \to \mathbb{R}^n (Y_0)$$
?

Assume for a moment that this is possible. Then it holds:

1) $\tilde{g} := \Pi(f(\tilde{h}))$ is a Lipschitz vector field on $E \cong \mathbb{R}^2$ if f is Lipschitz : $\tilde{g} = \Pi \circ f \circ \tilde{h}$.

It follows that all solutions of (3.2) exist and are unique. The observation ODE (5.2) can be used for the reconstruction of the set \mathcal{A} of (3.3).

2) The set \mathcal{A} of amenable solutions of (3.3) lies in the set

$$\mathcal{M} := \left\{ y \in \mathbb{R}^n | y = \tilde{H}(u), \ u \in \mathbb{R}^2 \right\}.$$

$$(Y_0) \qquad (\mathbb{R}^m) \qquad (5.4)$$

Since h is Lipschitz the set (5.4) is a 2-dimensional (m-dimensional) Lipschitz manifold. If \mathcal{A} is the global attractor the set \mathcal{M} attracts all orbits of (3.3) from $\mathbb{R}^n(Y_0)$. In this case \mathcal{M} is called the *inertial manifold* of (3.3) ([2] Foias et al; [7] Robinson). **Theorem 5.1** (Stein's extension theorem [11]) Let X be a closed subset of \mathbb{R}^m , $H(=Y_0)$ be a Hilbert space, and $h: X \to H$ be a continuous function. Then there is a continuous extension $\tilde{h}: \mathbb{R}^m \to H$ and there exists a K = K(m) such that if $|h(x) - h(y)| \leq C|x - y|, \forall x, y \in X$, then $|\tilde{h}(x) - \tilde{h}(y) \leq KC|x - y|, \forall x, y \in \mathbb{R}^m$.

Corollary 5.1 Under the conditions of Theorem 4.1 the reduced vector field (5.2) can be extended to a Lipschitz vector field in $E \cong \mathbb{R}^2$. Any amenable solution y of the infinite-dimensional vector field $\dot{y} = Ay + B\phi$ in the phase space Y_0 can be represented as $y = \tilde{h}(u(t))$, where u(t) is the unique solution of the reduced equation (5.2) with initial state $u(0) = \Pi y(0)$.

6 Constructing a reduced system from measurements Suppose

$$\dot{y} = f(y) \tag{6.1}$$

is a given (unknown) dissipative system in \mathbb{R}^n with attractor \mathcal{A} .

Step 1: Choice of the linear part

Choose a number $\lambda > 0$ and matrices A, B and C of order $n \times n, n \times 1$ and $1 \times n$, respectively, such that $(A + \lambda I, B)$ is stabilizable, and $A + \lambda I$ has 2(m) eigenvalues with positive real part and n - 2 eigenvalues with negative real part.

Step 2: Reconstruction of the class of nonlinearities

Calculate on [0, T] the linear semigroup $S(t) = e^{At}$ with A from Step 1. Take an $\varepsilon < 0$ (tolerance), a natural number N and observe near the attractor the solutions $y_i(\cdot), i = 1, 2, ..., N$, of (6.1) on [0, T]. Find for any i = 1, 2, ..., N a solution $\phi_i \in L^{\infty}(0, T; \mathbb{R}^n)$ of the linear inequality

$$\sup_{t \in [0,T]} |y_i(t) - S(t)y_i(0) - \int_0^t S(t-s)B\phi_i(s)ds| < \varepsilon .$$
 (6.2)

It follows that $\phi_i(t) \approx \phi(Cy_i(t))$ in the sense of $L^2(0,T)$, where $\dot{y}_i(t) = Ay_i + B\phi(Cy_i(t))$ on [0,T].

Determine two constants
$$-\infty \leq \mu_1 < \mu_2 \leq +\infty \ (\mu_2 < +\infty \text{ if } \mu_1 = -\infty)$$

and $\mu_1 > -\infty \text{ if } \mu_2 = +\infty$) such that
 $\mu_1 [C(y_i(t) - y_j(t))]^2 \leq [\phi_i(t) - \phi_j(t)] C [y_i(t) - y_j(t)] \leq \mu_2 [C(y_i(t) - y_j(t))]^2, \quad i, j = 1, ..., N \quad t \in [0, T].$ (6.3)

Take two constants $-\infty \leq \mu_1 < \mu_2 \leq +\infty$ such that

$$\mu_1 [C(y_i(t) - y_j(t))]^2 \le [\phi_i(t) - \phi_j(t)] C [y_i(t) - y_j(t)] \\ \le \mu_2 [C (y_i(t) - y_j(t))]^2, \ i, j = 1, \dots, N, \ t \in [0, T] .$$

Step 3: Graphic test of the frequency-domain / gap condition Compute the frequency-domain characteristic $\chi(i\omega - \lambda) = C((i\omega - \lambda)I - A)^{-1}B$ and compare with the circle $C[\mu_1, \mu_2]$ with $\mu_1 < \mu_2$ from Step 2 (Fig. 5).

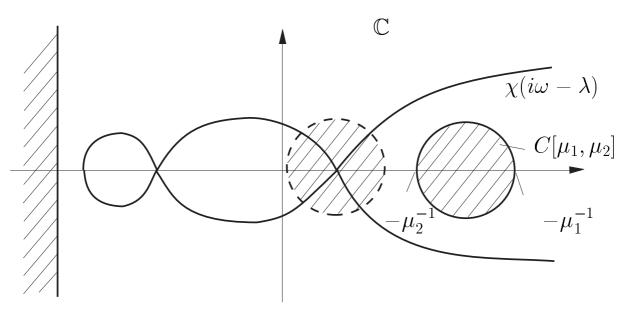


Fig. 5

If there is no intersection between $\chi(i\omega - \lambda)$ and $C[\mu_1, \mu_2]$ go to Step 4. In other case change A, B, C or m and begin again with Step 1.

Step 4: Calculation of a homeomorphism $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ Find with A, B, C from Step 1 and $\mu_1 < \mu_2$ from Step 3 an $n \times n$ matrix $P = P^*$ of the matrix inequality

$$2 y^* P \left[(A + AI)y + B\psi \right] + (\mu_2 Cy - \psi) \left(\psi - \mu_1 Cy \right) < 0,$$

$$\forall y \in \mathbb{R}^n, \ \forall \psi \in \mathbb{R}, |y| + |\psi| \neq 0.$$
(6.4)

Such a solution exists by the frequency theorem and is computable in a finite number of steps. Any solution $P = P^*$ of (6.3) has 2 negative and n-2 positive eigenvalues. Define a matrix $Q = Q^*$ through

 $Q^*PQ = \begin{pmatrix} -1 & & \\ & -1 & & 0 \\ & & +1 & \\ 0 & & \ddots & \\ & & & +1 \end{pmatrix}$. Then the projection is $\Pi : \mathbb{R}^n \to \mathbb{R}^2$

defined by $\Pi y = u, y \in \mathbb{R}^n, u \in \mathbb{R}^2, v \in \mathbb{R}^{n-2}$, s.th. $\binom{u}{v} = Q^{-1}y$. It follows from Theorem 4.1 that of \mathcal{A} is the amenable set of (6.1) then $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ is a homeomorphism.

Step 5: Determination of a reduced ODE for the full equation Let $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ be the homeomorphism from Step 4. Determine a reduced 2-dimensional ODE $\dot{u} = \underbrace{\Pi f(\tilde{h}(u))}_{\tilde{g}(u)}$ from the observations $\Pi y_i(t)$,

where $y_i(t)$ are arbitrary solutions of (6.1) near the attractor and use constructively the extension theorem of Stein to extend this vector field from the closed set $\Pi \mathcal{A} \subset E \cong \mathbb{R}^2$ to a Lipschitz vector field on the whole E.

7 When is a given linear projection a homeomorphism on the attractor?

Suppose

$$\dot{y} = f(y) \tag{7.1}$$

is on ODE in \mathbb{R}^n . \mathcal{A} is the set of amenable solutions and $\Pi : \mathbb{R}^n \to \mathbb{R}^k$ is a given linear projection. Under what conditions is $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ a homeomorphism?

Write (7.1) again in the form

$$\dot{y} = Ay + B\phi\left(\Pi y\right)\,,\tag{7.2}$$

where A and B are $n \times n$ and $n \times m$ matrices, and $B\phi : \mathbb{R}^n \to \mathbb{R}^n$ is defined by $B\phi(\Pi y) := f(y) - Ay$. Assume that f(0) = 0 and the solutions of (7.1) exist on \mathbb{R}_+ and are unique. Let $K \subset \mathbb{R}^n$ be an invariant and absorving cone for (7.2) having the property

$$K \cap \{ y \in \mathbb{R}^n \mid \Pi y = 0 \} = \{ 0 \} .$$
(7.3)

If (7.3) is satisfied then $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ is a homeomorphism.

(H3)" There exists a $k \times m$ matrix M such that

 $0 \leq (\Pi(y_1 - y_2))^* M[\phi(\Pi y_1) - \phi(\Pi y_2)], \quad \forall y_1, y_2 \in \mathbb{R}^n.$

Define the Hermitian form $F_{\mathbb{C}}(y,\xi) := \operatorname{Re}(y^*\Pi^*M\xi), y \in \mathbb{C}^n, \xi \in \mathbb{C}^m$, and the transfer matrix $\chi(i\omega) := (i\omega I - A)^{-1}B$.

Theorem 7.1 Suppose that (H3)" is satisfied and there exists a $\delta > 0$ such that the following holds:

- 1) The pair $(A + \lambda I, B)$ is stabilizable;
- 2) The matrix $A + \lambda I$ has k eigenvalues with positive real part and n k with negative real part;
- 3) Re $F_{\mathbb{C}}(\chi(i\omega \lambda)\xi, \xi) < 0$, $\forall \xi \in \mathbb{C}^m, \xi \neq 0, \forall \omega \in \mathbb{R}$;

4) $\xi^* B^* \Pi^* M \xi \ge 0$, $\forall \xi \in \mathbb{R}^m$.

Then there exists a symmetric $n \times n$ matrix P having k negative and n - k positive eigenvalues such that the following holds:

- a) The k-dimensional cone $K := \{y \in \mathbb{R}^n | y^* P y \leq 0\}$ is positively invariant for all solutions of (7.1);
- b) $K \cap \{y \in \mathbb{R}^n | \Pi y = 0\} = \{0\}$;
- c) K absorbs \mathcal{A} and, consequently, $\Pi : \mathcal{A} \to \Pi \mathcal{A} \subset \mathbb{R}^k$ is a homeomorphism.

References

- Boichenko, V. A., Leonov, G. A., and V. Reitmann, Dimension Theory for Ordinary Differential Equations. Teubner, Stuttgart – Leipzig (2004).
- [2] Foias, C., Sell, G.R. and R. Temam, Inertial manifolds for nonlinear evolution equations. J. Diff. Eq. 73, 309-353 (1988).
- [3] Kantz, H. and V. Reitmann, Determining functionals for bifurcations on a finite time-interval in variational inequalities. Proc. Equadiff 2003, Hasselt, (Submitted).
- [4] Kantz, H. and V. Reitmann, Frequency domain conditions for the existence of almost periodic solutions in evolutionary variational inequalities. Stochastics & Dynamics (Submitted).
- [5] Ladyzhenskaya, O. A., On estimates of the fractal dimension and the number of determining modes for invariant sets of dynamical systems. Zapiskii nauchnich seminarov LOMI. 163, 105 - 129 (1987).
- [6] Likhtarnikov, A. L. and V. A. Yakubovich, The frequency theorem for equations of evolutionary type. Siberian Math. J. 17 5, 790 - 803 (1976).
- [7] Robinson, J. C., Inertial manifolds and the cone condition.
 Dyn. Syst. Appl. 2 3, 311 330 (1993).
- [8] Salomon, D., Realization theory in Hilbert space. Math. Systems Theory 21, 147 164 (1989).
- [9] Sauer, T., Yorke, J. A. and M. Casdagli, *Embedology.* J. Stat. Phys. 65, 579 - 616 (1991).
- [10] Smith, R. A., Orbital stability of ordinary differential equations. J. Differential Equations 69, 265 – 287 (1986).
- [11] Stein, E. M., Singular integrals and differentialibility properties of functions. Princeton University Press, Princeton, New Jersey (1970).
- [12] Webb, G. F., Functional differential equations and nonlinear semigroups in L^P-spaces. J. Differential Equations 20, 71 89 (1996).