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1. Introdution

A time-series is onsidered as element of a funtion spae (weightedL

p

spae, Sobolev

spae). We assume that this time-series is ausal, i.e. it is the output (outgoing wave)

of a nonlinear nonautonomous dynamial system depending on a ertain input (on-

trol or inoming wave). Under very general onditions suh an input / output ontrol

system for onrete mehanial problems an be desribed by an unknown nonlin-

ear Volterra integral equation ([1, 18, 14, 5℄). For this integral equation we derive a

universal abstrat nonautonomous dynamial system in the spirit of Kalman's ([8℄)

and Salamon's ([16℄) representation theory with physially motivated rigged Hilbert

spaes as phase spaes. As anonial representation we an take, aording to this

theory, PDE's ([4℄) or equations with delay ([3℄).

The universal abstrat system an be onsidered as generalized nonlinear transport

equation of Boltzmann type ([15℄). The system onsists of a linear part (ollisionless

transport operator) and a nonlinear part (sattering operator). Any suh ontrol-

lable and observable linear part generates a ontinuous semigroup whih an be

transformed into a Lax-Phillips model. Suh a transformation is very useful for

inverse problems, i.e. the determination of parameters from time-series. Note, how-

ever, that in di�erene to other inverse problem tehniques ([1, 18, 14, 5℄) in our

approah not the parameters of the generating equation, but some parameters of the

abstrat transport equation are estimated. Aording to the abstrat absolute sta-

bility theory ([20℄) many global stability problems are determined by whole lasses of

nonlinear systems whose nonlinearities are haraterized by ertain quadrati forms.

The aim of our method is to reeive from time-series some information of this lass.

The number of parameters for the desription of suh a lass is in general muh

smaller than the number of unknown parameters of the onrete equation. A new

method for reurrent learning of input-output behaviour based on absolute stabil-

ity riteria, is onsidered in [17℄. In di�erene to our approah the authors of [17℄

introdue network equations from absolute stability theory ontaining some weights

whih are estimated by minimizing some error funtional. The main property of the

adapted network is its internal stability.

The desription of the linear part is done, as usual in the ontrol theory, by the
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frequeny-domain harateristi. The nonlinear part is given by a quadrati form

over the rigged Hilbert spaes and the ontrol spae. Using a frequeny-domain

theorem of Brusin ([4℄) for the solvability of a linear Riati-operator equation,

a one in the spae of perturbations is onstruted, whih ontains the unstable

perturbations. As an example we onsider a salar ODE of the seond order. An

assoiated PDE transport equation of Bolzmann-type will be derived whih has the

same global stability properties as the ODE problem.
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2. Realization of a Volterra integral equation

as ontrol system

Consider the nonlinear Volterra integral equation

�(t) = h(t) +

t

Z

0

G(t� � )'(�(� ); � ) d� (1)

with � : R ! �(= R

n

) as time-series or output ;

h : R ! � as perturbation ;

u(�) := '(�(�); �) : R ! U (= R

n

) as ontrol ,

G(t) 2 Lin(U;�) as kernel and

' : �� R ! U as nonlinearity .

Assumption 1.

�; U are real Hilbert spaes ;

9P = P

�

2 Lin(�;�); Q 2 Lin(U;�); R 2 Lin(U;U) :

(�(t); P�(t))

�

+ 2(�(t); Q'(�(t); t))

�

+ ('(�(t); t); R'(�(t); t))

U

� 0

(2)

8�(�); '(�((�); �) ; �(�) ontinuous solution from (1)

(Quadrati onstraints)

Assumption 2.

The linear part of (1) is �-stable, i.e.

9� � 0 8u 2 L

2

�

7! �(�) 2W

1;2

�

is a bounded operator and

L

2

�

(R

+

; �) := ff 2 L

2

lo

:

1

Z

0

jf(t)j

2

�

e

2�t

dt <1g is a weighted L

p

-spae ;

W

1;2

�

(R

+

; �) :=

n

f 2 L

2

�

(R

+

; �);

_

f 2 L

2

�

(R

+

; �)

o

is a Sobolev spae ;

�(t) =

t

R

0

G(t� � )u(� ) d� :
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Goal: Find Hilbert spaes Z

1

� Z

0

� Z

�1

(Rigged Hilbert spae struture)

Hilbert spaes U;� and linear bounded operators

A : Z

1

! Z

�1

; B : U ! Z

�1

; C : Z

0

! U

suh that the qualitative behaviour of (1) oinides with the qualitative

behaviour of the nonautonomous dynamial system

_z = Az +Bu(t) (3)

� = Cz; u(t) = '(�(t); t) ;

where the solution z(�; z

0

; u) with z(0; z

0

; 0) = z

0

satis�es the time-invariane

or oyle property [2℄

z(t + s; z

0

; u) = z(t; z(s; z

0

; u); �

s

u)

�(t + s; z

0

; u) = �(t; z(s; z

0

; u); �

s

u) ; 8t; s � 0 ;

with �

s

u(t) := u(t + s) as shift operator :

We all this

imbedding of the time-series or of (1) into a time-invariant ontrol system.

Theorem 1.

(Realization theorem of Kalman ([8℄), Helton ([7℄), Salamon ([16℄))

Suppose the linear part of the input / output proess given by (1) is �-

stable. Then there exists an imbedding of (1) into a system (3) by the

transport equation, i.e. by a system (3)

with Z

0

:= W

1;2

�

;

Z

1

:= D(A) = f� : �(s) 2W

1;2

�

;

1

R

0

e

2�s

j

�

�(s)j

2

ds <1g;

(A�)(s) :=

��(s)

�s

transport operator

(B�)(s) := G(s)�; � 2 U = (R

n

); Cz(s) := z(0):
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Example 1

The nonlinear Boltzmann transport equation from sattering theory

��

�t

=

��

�x

+

x

Z

�1

G(x� s)'(�(�; x)) d� :

Suppose that we know G;P;Q and R. Than the abstrat evolution system

gives the following information

Theorem 2.

(Generalized Brusin's theorem) ([4℄)

Let

^

G(�) :=

1

R

0

e

��t

G(t) dt be the transfer operator. Suppose that the

frequeny{domain ondition

^

G

�

(i!)PG(i!) + 2Re(Q

�

G(i!)) +R > 0 8! 2 R (4)

is satis�ed.

1) Then there exists an operator M = M

�

: W

1;2

�

! W

1;2

�

with the

following properties:

Suppose (�(�); h(�)) satis�es (1) and (h(�);Mh(�)) < 0. Then �(�) 2

L

2

(R

+

; �), i.e. it is stable. If (h(�);Mh(�)) > 0 then �(�) is unstable, i.e.

there exists a number � > 0 suh that

lim

T!1

e

��T

Z

T

0

j'(�(t); t) j

2

dt =1 :

2) M is the operator solution of a linear integral equation.
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3. Realization as Lax-Phillips sattering model

Let U;�; Z be Hilbert spaes and

H := L

2

(�1; 0;U) � Z � L

2

(0;+1; �)

z }| {

outgoing spae

z }| {

inner state spae

z }| {

inoming spae

Let G

t

be a ontinuous and bounded semigroup of operators on H whih

desribes how information in H hanges in time.

Let �

t

�

(resp. �

t

+

) denote the translation by t to the right on L

2

(�1; 0;U)

(resp. L

2

(0;1;U)).

Denote by S

[�a;b℄

the subspae

L

2

(�a; 0;U)� Z � L

2

(0; b; �)

Let �

[�a;b℄

be the orthogonal projetion onto S

[�a;b℄

.

The semigroup G

t

is of Lax-Phillips type if the following onditions are

satis�ed ([7℄):

(i) G

t

� = �

t

+

�; 8� 2 L

2

(0;1; �) (G

t

)

�

� = (�

t

�

)

�

�; 8� 2 L

2

(�1; 0;U)

(ii) For a > 0 de�ne W

t

:= �

[�1;a℄

G

t

�

[�a;1℄

Then W

t

and (W

t

)

�

are asymptotially stable.

(iii) For a � 0 we have

lim

t!1

�

[�a;1)

(G

t

)

�

f = 0 lim

t!1

�

[�a;1)

G

t

f = 0

Example 2.

Given a rod of unit length and temperature distribution

z(x; t); z(0; t) = z(1; t) = 0

Z := L

2

(0; 1); U � � := R

Af :=

d

2

f

dx

2

on D(A) where

D(A) := ff 2 L

2

(0; 1) : f(0) = f(1) = 0;

1

R

0

�

�

�

�

d

2

f

dx

2

�

�

�

�

2

<1g
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Figure 1: Temperature measurement of a heated

rod as Lax Phillips sattering model (after [7℄)
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There is a heater in the rod whih after input � supplies heat with distri-

bution �h(x) and a measuring instrument with reads the temperature at

x =

1

2

(see Fig. 1).

) B� := �h(x); Cz := z(

1

2

; t) de�nes a system

_z = Az +Bu

� = Cz : (5)

Advantage of a Lax-Phillips sattering model

Assume that (5) generates a general Lax-Phillips model. Then the input

and output information in (5) ompletely determines the eigenvalues of A.

Theorem 3. (Lax-Phillips, [11℄)

Suppose that in (5) the pair (A;B) is ontrollable and the pair (A;C) is

observable. Suppose also that the frequeny-domain harateristi

X (i!) = C(i!I �A)

�1

B

an be extended to an meromorphi funtion. Then the poles of X (�) are

exatly the eigenvalues of A.

)

The inverse Lax-Phillips sattering problem (determination of parameters

from observation) has a unique solution.
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4. Transport equation for the Mathieu-Hill equation

We onsider an ODE of the seond order

�� + � _� + '(�(t); t) = 0 (6)

with a smooth nonlinearity ' : R � R ! R : Assume that any solution

of (6) exists on R .

Let us rewrite (6) in the following way

8

<

:

_z(t) = Az(t) +B'(�(t); t)

�(t) = Cz(t) ;

(7)

with A =

0

�

0 1

�� 0

1

A

; B =

0

�

0

�1

1

A

; C =

�

1 0

�

;

where �(t) is the input and '(�(t); t) is the output.

As \nonlinear part" is onsidered the funtion

'(�; t) = (� +  os(t))� ; (8)

where � and  are parameters. Note that equation (6) with ' given by (8)

has the form of the Mathieu-Hill equation. It is well-known ([9, 13, 10℄)

that this equation with parametri exiitation an be used to desribe some

bifurations in dynamial bukling proesses.

Time is onsidered on the �nite interval [0; T ℄.

All funtions are onsidered as sequenes

f�(t

i

)g

N+1

1

; t

k

= (k � 1)

T

N

; k = 1; 2::; N + 1

where N + 1 is the number of nodes on the interval [0; T ℄.
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Step 1

Find a setor for the nonlinear part suh that

�

1

� '(�; t)=� � �

2

8t; �:

Take initial data (�

i

(0); _�

i

(0)); i = 1; 2::; L, and alulate the numbers

�

1

; �

2

suh that the relation

�

1

� '(�(t

i

); t

i

)=�(t

i

) � �

2

; i = 1; ::; N + 1 ;

is satis�ed. For the alulation of �

1

; �

2

an adaptive algorithm is used

whih is �nitely onverging in the sense of Yakubovih ([6℄).
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Step 2

Write system (6) as Volterra integral equation

�(t) = h(t) +

t

R

0

G(t� � )'(�(� ); � ) d� ;

'(�; t) = (� +  os(t))�;

(9)

where h(�) is the input and �(�) the output (� � �

h

).

The goal is to onstrut an operator M whih gives all information about

stability of �

h

(�) with respet to the input h(�).

Assume that the kernel of (9) an be written as

G(t� � ) = e

�(t��)

;

where � is an unknown parameter.

Let � � 0 be the unknown parameter of the Hilbert spae L

2

�

introdued

in Setion 2.

Step 3

In order to onstrut the operator M we have as an auxiliary problem to

solve the linear Fredholm integral equation of the seond kind

T

Z

0

S

(�;�)

(t; � )~u

h;(�;�)

(� )d� + ~u

h;(�;�)

(t) = g

h;(�;�)

(t); (10)

where S

(�;�)

is a funtion depending on � and �, and g

h;(�;�)

depends also

on h(�).

From this equation we get ~u

h;(�;�)

(�) whih will be used further.

Remark 1

If we solve the integral equation (10) we get the solution of an assoiated

Riati equation. In general the Riati equation is a quadrati equation
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with respet to the unknown matrix or operator. In our situation this

equation (10) is linear what is important for pratial realization. The

reason for this is the speial type of hyperboli equations arising in (3).

This property was also investigated in [19℄.

Step 4

Construt the ost-funtional J

T

�;�

(�) on L

2

�

.

Take some initial values �; �, alulate the funtional with these parameters

and ompare with the data.

Use for this an optimization proedure with respet to �; � for the funtional

omputed along the solution of the Fredholm integral equation (10).

As result of this step we get the funtional J

T

�

0

;�

0

.

Step 5

De�ne the operator M

T

by

(M

T

h)(s) := �

1

�

1

T

Z

0

fe

�2�(�)

h

e

s��

e

�

1

(s��)

+ e

��s

�

1

(s� � )

i

+

+�

2

(�� )e

�

1

s

g(Pe�

h

(� ) +Qh(� )) d� ; 8h 2W

1;2

�

0

; (11)

where e�

h

(t) =

t

R

0

(e

�

0

(t��)

+h(� ))d�+h(t) and the funtions �

1

(�); �

1

(�); �

2

(�)

depend only on �

0

.

Then the sign of the test funtional

< M

T

h; h >=

T

Z

0

(M

T

h)(s)h(s)e

2�

0

s

ds (12)

gives us the information about stability of �(�) aording to Brusin's theo-

rem (Theorem 2).
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5. Numerial results

Consider the equation (6),(7) with the system parameters

� = 1=3; � = 1;  = 2: (13)

Using the above algorithm with T = 2�;N = 18; L = 50 we �nd the setor

from Step 1 for the \nonlinearity" (8) with �

1

= �1; �

2

= 3.

For the kernel G(�) and the funtion spae L

2

�

we obtain the parameters

�

0

= 0:29; �

0

= 0:1 : (14)

This de�nes the operator M

T

for the test funtional (11)

In order to verify our result we onsider the solution of (9) with the initial

data

�(0) = 0:15683; _�(0) = 0; 25269 : (15)

Computing the assoiated h in (9) we get a positive sign of the test fun-

tional (11). Aording to Brusin's theorem the solution must be unstable.

The diret alulation of the solution (Fig. 3) shows their instability.

This means that the information from test funtional (12) is orret.
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Figure 2: The setor for the nonlinearity (8)
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Figure 3: Solution omponent of (9) with initial

ondition (14)
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