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1. Introduction

A time-series is considered as element of a function space (weighted L space, Sobolev
space). We assume that this time-series is causal, i.e. it is the output (outgoing wave)
of a nonlinear nonautonomous dynamical system depending on a certain input (con-
trol or incoming wave). Under very general conditions such an input / output control
system for concrete mechanical problems can be described by an unknown nonlin-
ear Volterra integral equation ([1, 18, 14, 5]). For this integral equation we derive a
universal abstract nonautonomous dynamical system in the spirit of Kalman’s ([8])
and Salamon’s ([16]) representation theory with physically motivated rigged Hilbert
spaces as phase spaces. As canonical representation we can take, according to this
theory, PDE’s ([4]) or equations with delay ([3]).

The universal abstract system can be considered as generalized nonlinear transport
equation of Boltzmann type ([15]). The system consists of a linear part (collisionless
transport operator) and a nonlinear part (scattering operator). Any such control-
lable and observable linear part generates a continuous semigroup which can be
transformed into a Lax-Phillips model. Such a transformation is very useful for
inverse problems, i.e. the determination of parameters from time-series. Note, how-
ever, that in difference to other inverse problem techniques ([1, 18, 14, 5]) in our
approach not the parameters of the generating equation, but some parameters of the
abstract transport equation are estimated. According to the abstract absolute sta-
bility theory ([20]) many global stability problems are determined by whole classes of
nonlinear systems whose nonlinearities are characterized by certain quadratic forms.
The aim of our method is to receive from time-series some information of this class.
The number of parameters for the description of such a class is in general much
smaller than the number of unknown parameters of the concrete equation. A new
method for recurrent learning of input-output behaviour based on absolute stabil-
ity criteria, is considered in [17]. In difference to our approach the authors of [17]
introduce network equations from absolute stability theory containing some weights
which are estimated by minimizing some error functional. The main property of the
adapted network is its internal stability.

The description of the linear part is done, as usual in the control theory, by the



frequency-domain characteristic. The nonlinear part is given by a quadratic form
over the rigged Hilbert spaces and the control space. Using a frequency-domain
theorem of Brusin ([4]) for the solvability of a linear Riccati-operator equation,
a cone in the space of perturbations is constructed, which contains the unstable
perturbations. As an example we consider a scalar ODE of the second order. An
associated PDE transport equation of Bolzmann-type will be derived which has the

same global stability properties as the ODE problem.



2. Realization of a Volterra integral equation
as control system

Consider the nonlinear Volterra integral equation
t

o(t) = h(t) + / Gt —1)p(o(r), 7)dr (1)

with o: R — =(= R") as time-series or output,

h: R — = asperturbation,
u(-) :==p(o(-),): R - U (= R™) as control ,
G(t) € Lin(U,Z) as kernel and

w:=x R — U asnonlinearity .

Assumption 1.

=, U are real Hilbert spaces,
JP = P* € Lin(Z, ), Q € Lin(U,Z), R € Lin(U,U) :
(o(t), Po(t)=+2(a(t), Qpla(t), t)= + (w(a(t),1), Re(a(t), )y <0
(2)
Vo(-),p(a((+),-),o(:) continuous solution from (1)

(Quadratic constraints)

Assumption 2.

The linear part of (1) is p-stable, i.e.
dp > 0Vu € L?) — o(-) € me is a bounded operator and

loc

LARE) ={f€Lj,: / |£(t)|2e*"dt < oo} is aweighted LP-space,
0

WpLQ(RJF;E) = {f € L?)(R+;E);f = L%(RJF;E)} is a Sobolev space ,

o(t) = bfG(t — 7)u(r)dr.



Goal: Find Hilbert spaces Z1 C Zy C Z_; (Rigged Hilbert space structure)

Hilbert spaces U, = and linear bounded operators
AIZ1—>Z_1, BIU—>Z_1, CiZ0—>U
such that the qualitative behaviour of (1) coincides with the qualitative

behaviour of the nonautonomous dynamical system

z = Az + Bu(t) (3)
o=Cz u(t) = plat),t),

where the solution z(-, 29, u) with 2(0, 2y, 0) = 2z, satisfies the time-invariance

or cocycle property [2]

2(t + s, 20, u) = 2(t; 2(s; 20, u), TU)

o(t+s,z0,u) = o(t; 2(s; zp,u), 7°u), Vt,s >0,
with 7°u(t) := u(t 4 s) as shift operator.

We call this

imbedding of the time-series or of (1) into a time-invariant control system.

Theorem 1.
(Realization theorem of Kalman ([8]), Helton ([7]), Salamon ([16]))

Suppose the linear part of the input / output process given by (1) is p-
stable. Then there exists an imbedding of (1) into a system (3) by the

transport equation, i.e. by a system (3)

with Z() = Wl 2
Z1 = D(A) = {€ : (s) € W} fe2P8|s %ds < o},
O¢(s)

(A&)(s) == 9 transport operator
(Bn)(s) :==G(s)n, n € U =(R™), Cz(s) = z(0).
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Example 1

The nonlinear Boltzmann transport equation from scattering theory

g—j = % + / G(z — s)p(o(T,z))dr.

— OO
Suppose that we know GG, P, () and R. Than the abstract evolution system

gives the following information

Theorem 2.

(Generalized Brusin’s theorem) ([4])

Let G(\) == [eMG(t)dt be the transfer operator. Suppose that the
0

frequency—domain condition

A

G*(iw) PG(iw) 4+ 2Re(Q*G(iw)) + R >0 Ywe R (4)

is satisfied.
1) Then there exists an operator M = M* : me — me with the
following properties:
Suppose (o(-), h(-)) satisfies (1) and (h(-), Mh(-)) < 0. Then o(-) €
L*(R,;Z), ie. it is stable. If (h(-), Mh(-)) > 0 then o(-) is unstable, i.e.
there exists a number # > 0 such that
T
Th—%o eﬁT/O | p(a(t),t)|?dt = 0o .

2) M is the operator solution of a linear integral equation.



3. Realization as Lax-Phillips scattering model
Let U, =, Z be Hilbert spaces and
H = L[*(-00,0;U) ® Z ® L*0,+00; =)

7\

outgoing space Inner state space Incoming space
Let G' be a continuous and bounded semigroup of operators on H which
describes how information in H changes in time.
Let 7' (resp. 71) denote the translation by ¢ to the right on L*(—o0, 0; U)
(resp. L?(0,00;U)).
Denote by Si_ 5 the subspace
L*(—a,0;U) ® Z @ L*(0,b; Z)
Let m_, be the orthogonal projection onto Sj_, .
The semigroup G' is of Lax-Phillips type if the following conditions are
satisfied ([7]):
(i) G¢=1l€, Ve € L0,00,5) (G)€ = (1), VE € L*(—00,0;1)
(1) For a > 0 define W' := m_, /G m_4 )
Then W and (W')* are asymptotically stable.

(217) Fora > 0 we have
T : te_
t1i>m - aoo)(G) f—O tli)I(r)lOW[_a,oo)Gf—O
Example 2.

Given a rod of unit length and temperature distribution

z(xz,t), 2(0,t) = 2z(1,t) =0
Z=1L1°0,1), U==Z:=R

Af = % on D(A) where
. 2

D(A) :={f € L*0,1): f(0)= =0, f de < 00}
0




heater
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Figure 1: Temperature measurement of a heated

rod as Lax Phillips scattering model (after [7])



There is a heater in the rod which after input « supplies heat with distri-

bution ah(zr) and a measuring instrument with reads the temperature at

1
T=3 (see Fig. 1).

= Ba := ah(x), Cz = z(3,t) defines a system

2 = Az + Bu
o= Cz. (5)

Advantage of a Lax-Phillips scattering model

Assume that (5) generates a general Lax-Phillips model. Then the input
and output information in (5) completely determines the eigenvalues of A.
Theorem 3. (Lax-Phillips, [11])

Suppose that in (5) the pair (A, B) is controllable and the pair (A, C) is

observable. Suppose also that the frequency-domain characteristic
X (iw) = C(iwl — A)™'B

can be extended to an meromorphic function. Then the poles of X(-) are
exactly the eigenvalues of A.

=

The inverse Lax-Phillips scattering problem (determination of parameters

from observation) has a unique solution.



4. Transport equation for the Mathieu-Hill equation
We consider an ODE of the second order

G+ ac + p(o(t),t) =0 (6)

with a smooth nonlinearity ¢ : R x R — R. Assume that any solution
of (6) exists on R.

Let us rewrite (6) in the following way

5(t) = Az(t) + Bo(o(t), 1)

o(t) = Cz(t),

: 0 1 0

with A = ., B= : CZ(lO),
—a 0 —1

where o(t) is the input and ¢(o(t),t) is the output.

As “nonlinear part” is considered the function

p(o,t) = (B +cos(t))o, (8)

where 0 and ~ are parameters. Note that equation (6) with ¢ given by (8)
has the form of the Mathieu-Hill equation. It is well-known ([9, 13, 10])
that this equation with parametric exicitation can be used to describe some
bifurcations in dynamical buckling processes.

Time is considered on the finite interval [0, 7.

All functions are considered as sequences
T
{o(t) ™, te = (k- 1)N7k =1,2.,N+1

where N 4 1 is the number of nodes on the interval [0, T7.
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Step 1

Find a sector for the nonlinear part such that

pr < (o, t)/o < uy Vi o.

Take initial data (0;(0),5;(0)), ¢ = 1,2.., L, and calculate the numbers
{41, (4o such that the relation

i < (ot ti)/o(t) <pa, i=1,.,N+1,

is satisfied. For the calculation of ui, o an adaptive algorithm is used

which is finitely converging in the sense of Yakubovich ([6]).
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Step 2

Write system (6) as Volterra integral equation

o(t) = h(t) + b; Gt — 1)p(o(r), 7)dT,

p(o,t) = (B 4 cos(t))o,
where A(-) is the input and o(-) the output (o = oy,).
The goal is to construct an operator M which gives all information about
stability of o;,(+) with respect to the input A(-).

Assume that the kernel of (9) can be written as
Gt—71)= M)

where A is an unknown parameter.
Let p > 0 be the unknown parameter of the Hilbert space L?) introduced
in Section 2.

Step 3

In order to construct the operator M we have as an auxiliary problem to

solve the linear Fredholm integral equation of the second kind

T

/ Sp )t T) g, (o0 (T)AT A+ g, (5 2) () = Gn (o) (F), (10)
0

where S(, ) is a function depending on p and A, and gy, (,) depends also
on h(:).

From this equation we get @y, (, 1)(-) which will be used further.

Remark 1

If we solve the integral equation (10) we get the solution of an associated

Riccati equation. In general the Riccati equation is a quadratic equation
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with respect to the unknown matrix or operator. In our situation this
equation (10) is linear what is important for practical realization. The
reason for this is the special type of hyperbolic equations arising in (3).
This property was also investigated in [19].

Step 4

Construct the cost-functional Jy () on L?.

Take some initial values A, p, calculate the functional with these parameters
and compare with the data.

Use for this an optimization procedure with respect to A, p for the functional
computed along the solution of the Fredholm integral equation (10).

As result of this step we get the functional Jfo, -

Step 5

Define the operator M7’ by

T
1
(MTh)(s) := N /{e_2p(7) [eS_TeAl(S_T) +er_spr(s — T)] +
0

o (—1)eM N (PG(T) + Qh(1))dr, VR € WH2,  (11)

po

t

where G;,(t) = [(e*=7")4h(7))dr+h(t) and the functions A (+), a1 (+), paa(*)
0

depend only on py.

Then the sign of the test functional
T
< M"h,h >= / (MTh)(s)h(s)e** ds (12)
0

gives us the information about stability of o(-) according to Brusin’s theo-

rem (Theorem 2).
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5. Numerical results

Consider the equation (6),(7) with the system parameters
a=1/3;, B=1, y=2. (13)

Using the above algorithm with 7' = 27w, N = 18, L = 50 we find the sector
from Step 1 for the “nonlinearity” (8) with p; = —1, s = 3.

For the kernel G(-) and the function space L7 we obtain the parameters
Ao = 0.29, po=0.1. (14)

This defines the operator M7 for the test functional (11)
In order to verify our result we consider the solution of (9) with the initial

data
o(0) = 0.15683, ¢(0) = 0, 25269 . (15)

Computing the associated h in (9) we get a positive sign of the test func-
tional (11). According to Brusin’s theorem the solution must be unstable.
The direct calculation of the solution (Fig. 3) shows their instability.

This means that the information from test functional (12) is correct.
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mu'=3 mu’=-1

Figure 2: The sector for the nonlinearity (8)
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2'(0)=0.15683 2’(0)=0.25269 T =6.2832 N =18 p’x +0.33333px+1(1+2c0s(t))x=0

3 T T T

— ®

— o'ty

Figure 3: Solution component of (9) with initial

condition (14)

16




References

[1] Banks, H. T., Fabiano, R. H., and Y. Wang, Inverse problem techniques for
beams with tip body and time hysteresis damping. Mat. Aplic. Comp., 8 2, 101—
118 (1989).

[2] Boichenko, V. A.; Leonov, G. A.; and V. Reitmann, Dimension Theory for
Ordinary Differential Equations. Teubner, Stuttgart (2004).

[3] Brusin, V. A., On a class of nonautonomous dynamical systems defined by
nonlinear integral equations. Izv. Vyssh. Uchevn. Zaved., Radiofizika, 13 4,

491-500 (1970).

[4] Brusin, V. A., Use of method of abstract differential equations in the study of
Volterra integral equation. Sibirskii Mathematicheskii Zhurnal, 18, 1246-1258
(1977).

[5] Cavaterra, C., An inverse problem for a viscoelastic Timoshenko beam model.

ZAA, 17 1, 67-87 (1998).

[6] Fomin, V. N., Fradkov, A. L., and V. A. Yakubovich, Adaptive Control of
Dynamical Objects. Moscow, Nauka, (1981). (in Russian)

[7] Helton, J. W., Systems with infinite-dimensional state space: the Hilbert space
approach. Proc. IEEE, 64, 145-160 (1976).

[8] Kalman, R.E., Arbib, M., and P. Falb, Topics in Mathematical Systems Theory.
McGraw-Hill, New York (1969).

[9] Karagiozova, D. and N. Jones, Strain-rate effects in the dynamic buckling of a

simple elastic-plastic model. J. Appl. Mechanics, 64, 193 — 200 (1997).

[10] Kirkpatrick, S. W., Schroeder, M., and J. W. Simons, Evaluation of passenger
rail vehichle crash worthiness. Intern. J. of Crashworthiness, 6 1, 95-106 (2001).

[11] Lax, P.D. and R. S. Phillips, Scattering theory for dissipative hyperbolic systems.
J. Funct. Anal., 14, 172 — 235 (1973).

17



[12] Lax, P.D. and R. S. Phillips, Scattering Theory. Academic Press, New York
(1967).

[13] Lee, L. H. N., Quasi-bifurcation of rods within an azial plastic compressive wave.

Trans. ASME, 45, 100-104 (1978).

[14] Osokin, A. E. and Tu. V. Suvorova, Nonlinear governing equation of a hereditary
medium and methodology of determining its parameters. PMM USSR, 42 6,
1107-1114 (1978).

[15] Reed, M. and B. Simon, Methods of Modern Mathematical Physics III: Scat-
tering Theory. Academic Press, New York (1979).

[16] Salamon, D., Realization Theory in Hilbert Space, Math. System Theory. 21,
147-164 (1989).

[17] Steil, J. J. and H. Ritter, Input-output stability of recurrent neural networks
with delays using circle criteria. In Proc. ICSC / IFAC Symp. NEURAL COM-
PUTATION, NC’ 98, ICSC Academic Press, 519-225 (1998).

[18] Tobias, T.A. and Yu. K. Engelbrekht, Inverse problems for evolution equations
of the integrodifferential type. PMM USSR, 49 4, 519-524 (1985).

[19] Triggiani, R., An optimal control problem with unbounded control operator and

unbounded observation operator where the algebraic Riccati equation is satisfied

as a Lyapunov equation. Appl. Math. Lett., 10 2, 95-162 (1997).

[20] Yakubovich, V.A., On the abstract theory of absolute stability of nonlinear sys-
tems. Vestn. Leningr. Univ., Ser. Mat. Mekh., Astran., 13, 99-118 (1977).

18



