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1. Introdu
tion

A time-series is 
onsidered as element of a fun
tion spa
e (weightedL

p

spa
e, Sobolev

spa
e). We assume that this time-series is 
ausal, i.e. it is the output (outgoing wave)

of a nonlinear nonautonomous dynami
al system depending on a 
ertain input (
on-

trol or in
oming wave). Under very general 
onditions su
h an input / output 
ontrol

system for 
on
rete me
hani
al problems 
an be des
ribed by an unknown nonlin-

ear Volterra integral equation ([1, 18, 14, 5℄). For this integral equation we derive a

universal abstra
t nonautonomous dynami
al system in the spirit of Kalman's ([8℄)

and Salamon's ([16℄) representation theory with physi
ally motivated rigged Hilbert

spa
es as phase spa
es. As 
anoni
al representation we 
an take, a

ording to this

theory, PDE's ([4℄) or equations with delay ([3℄).

The universal abstra
t system 
an be 
onsidered as generalized nonlinear transport

equation of Boltzmann type ([15℄). The system 
onsists of a linear part (
ollisionless

transport operator) and a nonlinear part (s
attering operator). Any su
h 
ontrol-

lable and observable linear part generates a 
ontinuous semigroup whi
h 
an be

transformed into a Lax-Phillips model. Su
h a transformation is very useful for

inverse problems, i.e. the determination of parameters from time-series. Note, how-

ever, that in di�eren
e to other inverse problem te
hniques ([1, 18, 14, 5℄) in our

approa
h not the parameters of the generating equation, but some parameters of the

abstra
t transport equation are estimated. A

ording to the abstra
t absolute sta-

bility theory ([20℄) many global stability problems are determined by whole 
lasses of

nonlinear systems whose nonlinearities are 
hara
terized by 
ertain quadrati
 forms.

The aim of our method is to re
eive from time-series some information of this 
lass.

The number of parameters for the des
ription of su
h a 
lass is in general mu
h

smaller than the number of unknown parameters of the 
on
rete equation. A new

method for re
urrent learning of input-output behaviour based on absolute stabil-

ity 
riteria, is 
onsidered in [17℄. In di�eren
e to our approa
h the authors of [17℄

introdu
e network equations from absolute stability theory 
ontaining some weights

whi
h are estimated by minimizing some error fun
tional. The main property of the

adapted network is its internal stability.

The des
ription of the linear part is done, as usual in the 
ontrol theory, by the
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frequen
y-domain 
hara
teristi
. The nonlinear part is given by a quadrati
 form

over the rigged Hilbert spa
es and the 
ontrol spa
e. Using a frequen
y-domain

theorem of Brusin ([4℄) for the solvability of a linear Ri

ati-operator equation,

a 
one in the spa
e of perturbations is 
onstru
ted, whi
h 
ontains the unstable

perturbations. As an example we 
onsider a s
alar ODE of the se
ond order. An

asso
iated PDE transport equation of Bolzmann-type will be derived whi
h has the

same global stability properties as the ODE problem.
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2. Realization of a Volterra integral equation

as 
ontrol system

Consider the nonlinear Volterra integral equation

�(t) = h(t) +

t

Z

0

G(t� � )'(�(� ); � ) d� (1)

with � : R ! �(= R

n

) as time-series or output ;

h : R ! � as perturbation ;

u(�) := '(�(�); �) : R ! U (= R

n

) as 
ontrol ,

G(t) 2 Lin(U;�) as kernel and

' : �� R ! U as nonlinearity .

Assumption 1.

�; U are real Hilbert spa
es ;

9P = P

�

2 Lin(�;�); Q 2 Lin(U;�); R 2 Lin(U;U) :

(�(t); P�(t))

�

+ 2(�(t); Q'(�(t); t))

�

+ ('(�(t); t); R'(�(t); t))

U

� 0

(2)

8�(�); '(�((�); �) ; �(�) 
ontinuous solution from (1)

(Quadrati
 
onstraints)

Assumption 2.

The linear part of (1) is �-stable, i.e.

9� � 0 8u 2 L

2

�

7! �(�) 2W

1;2

�

is a bounded operator and

L

2

�

(R

+

; �) := ff 2 L

2

lo


:

1

Z

0

jf(t)j

2

�

e

2�t

dt <1g is a weighted L

p

-spa
e ;

W

1;2

�

(R

+

; �) :=

n

f 2 L

2

�

(R

+

; �);

_

f 2 L

2

�

(R

+

; �)

o

is a Sobolev spa
e ;

�(t) =

t

R

0

G(t� � )u(� ) d� :
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Goal: Find Hilbert spa
es Z

1

� Z

0

� Z

�1

(Rigged Hilbert spa
e stru
ture)

Hilbert spa
es U;� and linear bounded operators

A : Z

1

! Z

�1

; B : U ! Z

�1

; C : Z

0

! U

su
h that the qualitative behaviour of (1) 
oin
ides with the qualitative

behaviour of the nonautonomous dynami
al system

_z = Az +Bu(t) (3)

� = Cz; u(t) = '(�(t); t) ;

where the solution z(�; z

0

; u) with z(0; z

0

; 0) = z

0

satis�es the time-invarian
e

or 
o
y
le property [2℄

z(t + s; z

0

; u) = z(t; z(s; z

0

; u); �

s

u)

�(t + s; z

0

; u) = �(t; z(s; z

0

; u); �

s

u) ; 8t; s � 0 ;

with �

s

u(t) := u(t + s) as shift operator :

We 
all this

imbedding of the time-series or of (1) into a time-invariant 
ontrol system.

Theorem 1.

(Realization theorem of Kalman ([8℄), Helton ([7℄), Salamon ([16℄))

Suppose the linear part of the input / output pro
ess given by (1) is �-

stable. Then there exists an imbedding of (1) into a system (3) by the

transport equation, i.e. by a system (3)

with Z

0

:= W

1;2

�

;

Z

1

:= D(A) = f� : �(s) 2W

1;2

�

;

1

R

0

e

2�s

j

�

�(s)j

2

ds <1g;

(A�)(s) :=

��(s)

�s

transport operator

(B�)(s) := G(s)�; � 2 U = (R

n

); Cz(s) := z(0):
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Example 1

The nonlinear Boltzmann transport equation from s
attering theory

��

�t

=

��

�x

+

x

Z

�1

G(x� s)'(�(�; x)) d� :

Suppose that we know G;P;Q and R. Than the abstra
t evolution system

gives the following information

Theorem 2.

(Generalized Brusin's theorem) ([4℄)

Let

^

G(�) :=

1

R

0

e

��t

G(t) dt be the transfer operator. Suppose that the

frequen
y{domain 
ondition

^

G

�

(i!)PG(i!) + 2Re(Q

�

G(i!)) +R > 0 8! 2 R (4)

is satis�ed.

1) Then there exists an operator M = M

�

: W

1;2

�

! W

1;2

�

with the

following properties:

Suppose (�(�); h(�)) satis�es (1) and (h(�);Mh(�)) < 0. Then �(�) 2

L

2

(R

+

; �), i.e. it is stable. If (h(�);Mh(�)) > 0 then �(�) is unstable, i.e.

there exists a number � > 0 su
h that

lim

T!1

e

��T

Z

T

0

j'(�(t); t) j

2

dt =1 :

2) M is the operator solution of a linear integral equation.

6



3. Realization as Lax-Phillips s
attering model

Let U;�; Z be Hilbert spa
es and

H := L

2

(�1; 0;U) � Z � L

2

(0;+1; �)

z }| {

outgoing spa
e

z }| {

inner state spa
e

z }| {

in
oming spa
e

Let G

t

be a 
ontinuous and bounded semigroup of operators on H whi
h

des
ribes how information in H 
hanges in time.

Let �

t

�

(resp. �

t

+

) denote the translation by t to the right on L

2

(�1; 0;U)

(resp. L

2

(0;1;U)).

Denote by S

[�a;b℄

the subspa
e

L

2

(�a; 0;U)� Z � L

2

(0; b; �)

Let �

[�a;b℄

be the orthogonal proje
tion onto S

[�a;b℄

.

The semigroup G

t

is of Lax-Phillips type if the following 
onditions are

satis�ed ([7℄):

(i) G

t

� = �

t

+

�; 8� 2 L

2

(0;1; �) (G

t

)

�

� = (�

t

�

)

�

�; 8� 2 L

2

(�1; 0;U)

(ii) For a > 0 de�ne W

t

:= �

[�1;a℄

G

t

�

[�a;1℄

Then W

t

and (W

t

)

�

are asymptoti
ally stable.

(iii) For a � 0 we have

lim

t!1

�

[�a;1)

(G

t

)

�

f = 0 lim

t!1

�

[�a;1)

G

t

f = 0

Example 2.

Given a rod of unit length and temperature distribution

z(x; t); z(0; t) = z(1; t) = 0

Z := L

2

(0; 1); U � � := R

Af :=

d

2

f

dx

2

on D(A) where

D(A) := ff 2 L

2

(0; 1) : f(0) = f(1) = 0;

1

R

0

�

�

�

�

d

2

f

dx

2

�

�

�

�

2

<1g
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Figure 1: Temperature measurement of a heated

rod as Lax Phillips s
attering model (after [7℄)
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There is a heater in the rod whi
h after input � supplies heat with distri-

bution �h(x) and a measuring instrument with reads the temperature at

x =

1

2

(see Fig. 1).

) B� := �h(x); Cz := z(

1

2

; t) de�nes a system

_z = Az +Bu

� = Cz : (5)

Advantage of a Lax-Phillips s
attering model

Assume that (5) generates a general Lax-Phillips model. Then the input

and output information in (5) 
ompletely determines the eigenvalues of A.

Theorem 3. (Lax-Phillips, [11℄)

Suppose that in (5) the pair (A;B) is 
ontrollable and the pair (A;C) is

observable. Suppose also that the frequen
y-domain 
hara
teristi


X (i!) = C(i!I �A)

�1

B


an be extended to an meromorphi
 fun
tion. Then the poles of X (�) are

exa
tly the eigenvalues of A.

)

The inverse Lax-Phillips s
attering problem (determination of parameters

from observation) has a unique solution.
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4. Transport equation for the Mathieu-Hill equation

We 
onsider an ODE of the se
ond order

�� + � _� + '(�(t); t) = 0 (6)

with a smooth nonlinearity ' : R � R ! R : Assume that any solution

of (6) exists on R .

Let us rewrite (6) in the following way

8

<

:

_z(t) = Az(t) +B'(�(t); t)

�(t) = Cz(t) ;

(7)

with A =

0

�

0 1

�� 0

1

A

; B =

0

�

0

�1

1

A

; C =

�

1 0

�

;

where �(t) is the input and '(�(t); t) is the output.

As \nonlinear part" is 
onsidered the fun
tion

'(�; t) = (� + 
 
os(t))� ; (8)

where � and 
 are parameters. Note that equation (6) with ' given by (8)

has the form of the Mathieu-Hill equation. It is well-known ([9, 13, 10℄)

that this equation with parametri
 exi
itation 
an be used to des
ribe some

bifur
ations in dynami
al bu
kling pro
esses.

Time is 
onsidered on the �nite interval [0; T ℄.

All fun
tions are 
onsidered as sequen
es

f�(t

i

)g

N+1

1

; t

k

= (k � 1)

T

N

; k = 1; 2::; N + 1

where N + 1 is the number of nodes on the interval [0; T ℄.
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Step 1

Find a se
tor for the nonlinear part su
h that

�

1

� '(�; t)=� � �

2

8t; �:

Take initial data (�

i

(0); _�

i

(0)); i = 1; 2::; L, and 
al
ulate the numbers

�

1

; �

2

su
h that the relation

�

1

� '(�(t

i

); t

i

)=�(t

i

) � �

2

; i = 1; ::; N + 1 ;

is satis�ed. For the 
al
ulation of �

1

; �

2

an adaptive algorithm is used

whi
h is �nitely 
onverging in the sense of Yakubovi
h ([6℄).
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Step 2

Write system (6) as Volterra integral equation

�(t) = h(t) +

t

R

0

G(t� � )'(�(� ); � ) d� ;

'(�; t) = (� + 
 
os(t))�;

(9)

where h(�) is the input and �(�) the output (� � �

h

).

The goal is to 
onstru
t an operator M whi
h gives all information about

stability of �

h

(�) with respe
t to the input h(�).

Assume that the kernel of (9) 
an be written as

G(t� � ) = e

�(t��)

;

where � is an unknown parameter.

Let � � 0 be the unknown parameter of the Hilbert spa
e L

2

�

introdu
ed

in Se
tion 2.

Step 3

In order to 
onstru
t the operator M we have as an auxiliary problem to

solve the linear Fredholm integral equation of the se
ond kind

T

Z

0

S

(�;�)

(t; � )~u

h;(�;�)

(� )d� + ~u

h;(�;�)

(t) = g

h;(�;�)

(t); (10)

where S

(�;�)

is a fun
tion depending on � and �, and g

h;(�;�)

depends also

on h(�).

From this equation we get ~u

h;(�;�)

(�) whi
h will be used further.

Remark 1

If we solve the integral equation (10) we get the solution of an asso
iated

Ri

ati equation. In general the Ri

ati equation is a quadrati
 equation
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with respe
t to the unknown matrix or operator. In our situation this

equation (10) is linear what is important for pra
ti
al realization. The

reason for this is the spe
ial type of hyperboli
 equations arising in (3).

This property was also investigated in [19℄.

Step 4

Constru
t the 
ost-fun
tional J

T

�;�

(�) on L

2

�

.

Take some initial values �; �, 
al
ulate the fun
tional with these parameters

and 
ompare with the data.

Use for this an optimization pro
edure with respe
t to �; � for the fun
tional


omputed along the solution of the Fredholm integral equation (10).

As result of this step we get the fun
tional J

T

�

0

;�

0

.

Step 5

De�ne the operator M

T

by

(M

T

h)(s) := �

1

�

1

T

Z

0

fe

�2�(�)

h

e

s��

e

�

1

(s��)

+ e

��s

�

1

(s� � )

i

+

+�

2

(�� )e

�

1

s

g(Pe�

h

(� ) +Qh(� )) d� ; 8h 2W

1;2

�

0

; (11)

where e�

h

(t) =

t

R

0

(e

�

0

(t��)

+h(� ))d�+h(t) and the fun
tions �

1

(�); �

1

(�); �

2

(�)

depend only on �

0

.

Then the sign of the test fun
tional

< M

T

h; h >=

T

Z

0

(M

T

h)(s)h(s)e

2�

0

s

ds (12)

gives us the information about stability of �(�) a

ording to Brusin's theo-

rem (Theorem 2).

13



5. Numeri
al results

Consider the equation (6),(7) with the system parameters

� = 1=3; � = 1; 
 = 2: (13)

Using the above algorithm with T = 2�;N = 18; L = 50 we �nd the se
tor

from Step 1 for the \nonlinearity" (8) with �

1

= �1; �

2

= 3.

For the kernel G(�) and the fun
tion spa
e L

2

�

we obtain the parameters

�

0

= 0:29; �

0

= 0:1 : (14)

This de�nes the operator M

T

for the test fun
tional (11)

In order to verify our result we 
onsider the solution of (9) with the initial

data

�(0) = 0:15683; _�(0) = 0; 25269 : (15)

Computing the asso
iated h in (9) we get a positive sign of the test fun
-

tional (11). A

ording to Brusin's theorem the solution must be unstable.

The dire
t 
al
ulation of the solution (Fig. 3) shows their instability.

This means that the information from test fun
tional (12) is 
orre
t.
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Figure 2: The se
tor for the nonlinearity (8)
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Figure 3: Solution 
omponent of (9) with initial


ondition (14)
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