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1 Basi notation

Suppose that Y

0

is a real Hilbert spae with (�; �)

0

and k � k

0

as salar produt resp. norm.

Suppose also that A : D(A) � Y

0

! Y

0

is an unbounded densely de�ned linear operator.

The Hilbert spae Y

1

is de�ned as D(A) equipped with the salar produt

(y; �)

1

:= ((�I � A)y; (�I � A)�)

0

; y; � 2 D(A) ; (1.1)

where � 2 � (A) \ R (�(A) the resolvent set of A) is an arbitrary but �xed number.

The Hilbert spae Y

�1

is by de�nition the ompletion of Y

0

with respet to the norm

kzk

�1

:= k(�I � A)

�1

zk

0

: Thus we have the dense and ontinuous imbeddings

Y

1

� Y

0

� Y

�1

(1.2)

whih is alled Hilbert spae rigging struture. In this triple, Y

0

is the pivot spae, Y

1

is

the interpolation spae, and Y

�1

is the extrapolation spae (Triebel [14℄).

The �salar produt� (�; �)

�1;1

on Y

�1

� Y

1

is the unique extension by ontinuity of the

salar produt (�; �)

0

de�ned on Y

0

� Y

1

:

If T > 0 is an arbitrary number we de�ne the norm for Bohner measurable funtions in

L

2

(0; T ;Y

j

) ; j = 1; 0;�1; through

ky(�)k

2;j

:=

�

Z

T

0

ky(t)k

2

j

dt

�

1=2

: (1.3)

Let W

T

be the spae of funtions y(�) 2 L

2

(0; T ;Y

1

) for whih _y(�) 2 L

2

(0; T ;Y

�1

)

equipped with the norm

ky(�)k

W

T

:= (ky(�)k

2

2;1

+ k _y(�)k

2

2;�1

)

1=2

: (1.4)

2 Evolutionary variational inequalities

Suppose Y

1

� Y

0

� Y

�1

is a real Hilbert spae rigging struture with A 2 L(Y

1

; Y

�1

):

Assume that � and W are two real Hilbert spaes with salar produts (�; �)

�

; (�; �)

W

and

norms k � k

�

; k � k

W

, respetively.

Introdue the linear ontinuous operators

B : �! Y

�1

; C : Y

�1

! � (2.1)

and de�ne the set-valued map

' : W ! 2

�

(2.2)

and the map

 : Y

1

! R

+

[ f+1g : (2.3)

Note that in appliations ' is a material law nonlinearity,  is a ontat-type or frition

funtional and w(t) = Cy(t) is the input of the nonlinearity. Consider the evolutionary

variational inequality with set-valued nonlinearity (Duvant, Lions [4℄)
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( _y � Ay � B�; � � y)

�1;1

+  (�)�  (y) � 0 ; 8� 2 Y

1

; (2.4)

w(t) = Cy(t) ; �(t) 2 '(w(t)) ; y(0) = y

0

2 Y

0

: (2.5)

Remark 2.1 In the ontat free ase when  � 0 the evolutionary variational inequality

(2.4) � (2.5) is equivalent to an evolution equation with a set-valued nonlinearity ' given

by

_y = Ay + B� in Y

�1

; (2:4)

0

w(t) = Cy(t) ; �(t) 2 '(w(t)) ; y(0) = y

0

2 Y

0

: (2:5)

0

�

De�nition 2.1 A funtion y(�) 2 W

T

\ C(0; T ;Y

0

); is said to be a solution of (2.4),

(2.5) on (0; T ) if there exists a funtion �(�) 2 L

2

(0; T ; �) suh that for a.a. t 2 (0; T ) the

inequality (2.4), (2.5) is satis�ed and

T

R

0

 (y(t))dt < +1: The pair fy(�); �(�)g is alled a

response of (2.4), (2.5); �(�) is an assoiated seletion.

Suppose that F;G and H are quadrati forms on Y

1

��. The lass N (F;G)(N (F;G;H))

of nonlinearities for (2.4), (2.5) onsists of all maps (2.2) suh that the ondition a)

(onditions a) and b)) is (are) satis�ed:

a) For any T > 0 and any two funtions y(�) 2 L

2

(0; T ;Y

1

) and

�(�) 2 L

2

(0; T ; �) with

�(t) 2 '(Cy(t)) ; a.a. t 2 [0; T ℄ ; (2.6)

it follows that

F (y(t); �(t)) � 0 ; a:a: t 2 [0; T ℄ ; (2.7)

and there exists a ontinuous funtion � : Y

1

! R (generalized potential) and numbers

� > 0 and  > 0 suh that

t

Z

s

G

�

y(�); �(�)

�

d� �

1

2

h

�(y(t))� �(y(s))

i

+ �

Z

t

s

�(y(�)d�

for all 0 � s < t � T (2.8)

and

�(y) � kyk

2

0

; 8y 2 Y

0

: (2.9)
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b) For any T > 0 and any two pairs of funtions

y

1

(�); y

2

(�) 2 L

2

(0; T ;Y

1

) and �

1

(�); �

2

(�) 2 L

2

(0; T ; �)

with �

i

(t) 2 '(Cy

i

(t)) ; i = 1; 2 ; a.a. t 2 [0; T ℄ ;

it follows that H(y

1

(t)� y

2

(t); �

1

(t)� �

2

(t)) � 0 ; a.a. t 2 [0; T ℄:

(A1) For �xed linear operators A;B;C; �xed funtion (2.3), arbitrary y

0

2 Y

0

; T > 0

and ' 2 N (F;G;H)(' 2 N (F;G)) there exists a response fy(�); �(�)g of (2.4), (2.5).

Example 2.1 Suppose that 
 � R

n

is a domain with smooth boundary � = � 
 ;

h : �! R is a given salar funtion (�outer pressure�) and u(x; t) (� inner pressure�) is a

solution of

�u

�t

= 4u in 
� R

+

(2.10)

subjet to the boundary onditions

u = h on �� R

+

)

�u

�n

� 0 ; (2.11)

u > h on �� R

+

)

�u

�n

= 0 (2.12)

and the initial ondition

u(�; 0) = u

0

: (2.13)

The system (2.10) � (2.13) desribes the transfer problem of �uid arossing a semi-

permeable membrane (Lions [12℄).

Instead of (2.11) � (2.12) we onsider the (nonlinear) boundary ondition

�u

�n

� g on �� R

+

; (2.14)

where g : R ! R is a given funtion.

In order to get a representation of (2.10) � (2.14) in the form of a variational inequality

(2.4), (2.5) we introdue the spaes

Y

0

:= L

2

(
) ;

Y

1

:= W

1;2

(
) = fv 2 L

2

(
) :

�v

�x

i

2 L

2

(
) ; i = 1; 2; : : : ; ng and

� := W

�1=2;2

(�
) :

An operator A 2 L(Y

1

; Y

�1

) is de�ned by

(Au; v)

�1;1

= �

Z




n

X

i=1

�u

�x

i

�v

�x

i

dx ; 8u; v 2 Y

1

: (2.15)
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The operator B 2 L(�; Y

�1

) is given by

(B�; y)

�1;1

= �

Z

�


�ydS ; 8� 2 � ; 8y 2 Y

1

; (2.16)

the nonlinear map ' : Y

1

! � is given by

'(y(x)) := g (y)(x) on � ; (2.17)

and the �ontat funtional�  : Y

1

! R

+

[ f+1g is de�ned by

 (�) :=

�

0 if �(x) � h(x) on � ;

+1 in other ases.

(2.18)

Thus the transfer problem of �uid (2.10) � (2.14) an be onsidered as evolutionary

variational inequality

( _y � Ay � B� ; � � y)

�1;1

+  (�)�  (y) � 0 ; 8� 2 Y

1

; (2.19)

�(t) = '(y(t)) ; y(0) = y

0

2 Y

0

: (2.20)

Let us desribe the lass N (F;G) for (2.19), (2.20). We assume that the nonlinearity '

from (2.17) has the following two properties:

(H1) 9�

0

> 0 8y

1

; y

2

2 Y

1

:

0 � (B'(y

1

)� B'(y

2

) ; y

1

� y

2

)

�1;1

� �

0

ky

1

� y

2

k

2

1

: (2.21)

(H2) There exist a Fréhet di�erentiable map � : Y

0

! R and a number � > 0 suh that

with the Fréhet derivative �

0

2 L(Y

0

;R) the inequality

('(y); �)

1

� �

0

(y)� + ��(�) ; 8� 2 Y

1

(2.22)

is satis�ed.

It is lear that (2.21) and (2.22) an be onsidered as a monotoniity ondition and a

potential-type ondition, respetively. Using (2.21) we an introdue the quadrati form

F (y; �) := �

0

kyk

2

1

� (B�; y)

�1;1

; (y; �) 2 Y

1

� � ; (2.23)

whih satis�es (2.7). The inequality (2.22) an be used to de�ne the quadrati form

G(y; �) := (G

1

Ay; �)

�

+ (G

2

B�; �)

�

on Y

1

� � (2.24)

with G

i

: Y

�1

! � (i = 1; 2): It is easy to see that the form G from (2.24) and the

generalized potential � from (2.22) satisfy the inequality (2.8) . �
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3 Determining observations

a) Observations that are determining for the dissipativity

Suppose S is a real Hilbert spae (observation spae), M : Y

1

! S is a given linear

bounded operator (observation operator), P 2 L(Y

�1

; Y

0

) \ L(Y

0

; Y

1

); P = P

�

in Y

0

, is

also given suh that the following onditions are satis�ed.

1) V

1

(y) :=

1

2

(y; Py)

0

� 0 ; 8y 2 Y

0

;

2) V (y) := V

1

(y) +

1

2

� (y) � onst � kyk

2

0

; 8 y 2 Y

0

;

3) There exist numbers � > 0 and � > 0 suh that for an arbitrary solution y(�) of

(2.4), (2.5) the funtion m(t) := V (y(t)) satis�es

_m(t) + 2�m(t) +  (y (t))�  (�Py(t) + y(t)) � �kMy(t)k

2

S

; a:a: t � 0: (3.1)

Then the observation

�(t) := �kMy(t)k

2

S

(3.2)

is determining for the dissipativity with domain D of (2.4), (2.5), i.e., the property

Z

t+1

t

kMy(�)k

2

S

d� ! 0 for t! +1

implies that

lim sup

t!+1

m(t) � C and,

onsequently, (2.4), (2.5) is (point) dissipative with domain of dissipativity

D :=

n

y 2 Y

0

: kyk

2

0

�

2C



o

: (3.3)

b) Observations that are determining for the omplete deviation of arbitrary two solutions

Suppose M 2 L(Y

1

; S) is given as in a). Suppose also that there exist an operator

P

1

2 L(Y

�1

; Y

0

) \ L(Y

0

; Y

1

) ; P

1

= P

�

1

in Y

0

, numbers �

1

> 0; �

1

> 0; Æ

1

> 0 and �

1

> 0

suh that for arbitrary two solutions y

1

(�); y

2

(�) of (2.4), (2.5) the funtion

m

1

(t) :=

�

y

1

(t)� y

2

(t); P

1

�

y

1

(t)� y

2

(t)

�

�

0

satis�es for a.a. t > 0 the inequality

_m

1

(t) + 2�

1

m

1

(t) +  (y

1

(t))�  (y

1

(t)� P

1

(y

2

(t)� y

1

(t)))

� (y

2

(t) + P

1

(y

1

(t)� y

2

(t))) +  (y

2

(t)) (3.4)

+ Æ

1

ke

��

1

t

(y

1

(t)� y

2

(t))k

2

0

� �

1

kM(y

1

(t)� y

2

(t))k

2

S

:

Then the observation �

1

(t) = �

1

kM(y

1

(t) � y

2

(t))k

2

S

is determining for the omplete

deviation y

1

(t)� y

2

(t) ; i.e. ; the property
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Z

t+1

t

kM(y

1

(�)� y

2

(�))k

2

S

d� ! 0 for t! +1 (3.5)

implies that for a.a. t > 0

ky

1

(t)� y

2

(t)k

2

0

� 

1

e

2�

1

t

ky

1

(0)� y

2

(0)k

2

0

; (3.6)

where 

1

> 0 is a ertain onstant not depending on the solutions.

The inequality (3.6) follows from (3.4) sine

Z

1

0

ke

��

1

t

(y

1

(t)� y

2

(t))k

2

S

dt < +1: (3.7)

) Observations that are determining for the onvergene in a subspae of odimension n

Suppose M 2 L(Y

1

; S) is given as in a). Suppose also that there exist an operator

P

2

2 L(Y

�1

; Y

0

) \ L(Y

0

; Y

1

); P

2

= P

�

2

in Y

0

, a natural number n, numbers �

2

> 0 ;

�

2

> 0 ; Æ

2

> 0 and �

2

> 0 suh that for arbitrary two solutions y

1

(�); y

2

(�) of (2.4), (2.5)

the funtion

m

2

(t) := (y

1

(t))� y

2

(t) ; P

2

(y

1

(t)� y

2

(t)))

0

satis�es for a.a. t > 0 the inequality

_m

2

(t) + 2�

2

m

2

(t) +  (y

1

(t))�  (y

1

(t)� P

2

(y

2

(t)� y

1

(t)))

� (y

2

(t) + P

2

(y

1

(t)� y

2

(t))) +  (y

2

(t))

+Æ

2

ke

��

2

t

(1� �

n

)(y

1

(t)� y

2

(t))k

2

0

� �

2

kM(y

1

(t)� y

2

(t)k

2

S

: (3.8)

Then the observation �

2

(t) := �

2

kM(y

1

(t) � y

2

(t))k

2

S

is determining for the onvergene

in a subspae of Y

1

of odimension n, i.e., the property

Z

t+1

t

kM(y

1

(�)� y

2

(�))k

2

S

d� ! 0 for t! +1 (3.9)

implies that for a.a. t > 0

k(1� �

n

)(y

1

(t)� y

2

(t))k

2

0

� 

2

e

�2�

2

t

ky

1

(0)� y

2

(0)k

2

0

; (3.10)

where 

2

> 0 is a ertain onstant not depending on the solutions. Again the inequality

(3.10) follows from (3.8) sine

Z

1

0

ke

�

2

t

(y

1

(t)� y

2

(t))k

2

0

dt < +1 : (3.11)

Remark 3.1 Determining observations (also alled �determining funtionals�) are intro-

dued by Foias and Prodi ([5℄), Ladyzhenskaya ([10℄), Foias and Temam ([6℄), Chueshov

([2, 3℄). Inverse problems for variational inequalities (parameter identi�ation problems)

are onsidered by Ho�mann and Sprekels ([7℄), Maksimov ([13℄) and other authors. �
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Theorem 3.1 Suppose that for the variational inequality (2.4), (2.5) there exist obser-

vations that are determining for the dissipativity with domain D, determining for the

omplete deviation and determining for the onvergene in a subspae of odimension n,

respetively. Then any positively invariant for (2.4), (2.5) ompat set in D has a �nite

fratal dimension.

Idea of proof: The inequalities (3.1), (3.6) and (3.10) are the essential su�ient parts

for the use of Ladyzhenskaya's theorem (see also Chuesov's version of this theorem in [2℄).

Theorem 3.2 ([10℄) Suppose K is a ompat set in the Hilbert spae (Y; k � k) and

g : K ! g(K) is a ontinuous map with K � g (K) and suh that

kg(y)� g(�)k � lky � �k ; k(1� �

n

)(g(y)� g(�))k � qky � �k ; 8y; � 2 Y:

Here l � 0 ; 0 � q < 1 are onstants, �

n

is the orthoprojetor in Y on a subspae of

dimension n.

Then dim

F

K � n ln

2�

2

l

2

1� q

2

�

ln

2

1 + q

2

�

�1

(� is an absolute onstant):

4 Frequeny-domain onditions for the existene of de-

termining observations

We onsider the existene problem for observations that are determining for dissipativity.

The existene of observations whih are determining for the omplete deviation of two

solutions and whih are determining for the onvergene in a subspae of odimension n

an be shown similarly.

Our goal is to �nd e�etive onditions for the existene of Lyapunov-type funtions V

satisfying a) � ) in the Setion 4. A general approah onsists in using the Frequeny

Theorem whih is also alled Kalman-Yakubovih-Popov Lemma (KYP Lemma [1, 11℄).

Let us state the assumptions for this theorem.

(A2) There exists a number � > 0 suh that for any T > 0 and any f 2 L

2

(0; T ;Y

�1

) the

problem

_y = (A + �I)y + f(t) ; y(0) = y

0

(4.1)

is well-posed, i.e., for arbitrary y

0

2 Y

0

; f(�) 2 L

2

(0; T ;Y

�1

) there exists an unique solution

y(�) 2 W

T

satisfying (4.1) in the sense that

( _y; �)

�1;1

= ((A+ �I)y; �)

�1;1

+ (f(t) ; �)

�1;1

; 8� 2 Y

1

; a:a: t 2 [0; T ℄ ; (4.2)

and depending ontinuously on the initial data, i.e.,

ky(�)k

2

W

T

� 

1

ky

0

k

2

0

+ 

2

kf(�)k

2

2;�1

; (4.3)

8



where 

1

> 0 and 

2

> 0 are some onstants. Furthermore, any solution of

_y = (A + �I)y; y(0) = y

0

(4.4)

is exponentially dereasing for t! +1 , i.e., there exist onstants 

3

> 0 and " > 0 suh

that

ky(t)k

0

� 

3

e

�"t

ky

0

k

0

; t > 0 : (4.5)

(A3) There exists a number � > 0 suh that the operator A+�I 2 L(Y

1

; Y

�1

) is regular,

i.e., for any T > 0; y

0

2 Y

1

; z

T

2 Y

1

and f 2 L

2

(0; T ;Y

0

) the solutions of the diret problem

_y = (A+ �I)y + f(t); y(0) = y

0

; a:a: t 2 [0; T ℄ ; (4.6)

and of the dual problem

_z = �(A + �I)

�

z + f(t); z(0) = z

T

; a:a: t 2 [0; T ℄ ; (4.7)

are strongly ontinuous in t in the norm of Y

1

.

In the next assumption whih is alled frequeny-domain ondition it is neessary to

onsider the omplexi�ation of spaes and linear operators under onsideration.

The elements of the omplexi�ation Y



0

of the real Hilbert spae Y

0

an be written as x+iy

with x; y 2 Y

0

, and the inner produt of Y



0

will be denoted by (�; �)

Y



0

: The omplexi�ation

of the other spaes are de�ned in a similar way. For the linear operator A : Y

1

! Y

�1

we

denote by A



the linear operator A



: Y



1

! Y



�1

de�ned by A



(x+ iy) = Ax+ iAy: Again,

the omplexi�ation of the other linear operators whih will appear below, is de�ned in a

similar way.

Consider now the omplexi�ation of the quadrati form F (similarly of G). Suppose that

F (y; �) = (F

1

y; y)

�1;1

+ 2(F

2

y; �)

�

+ (F

3

�; �)

�

(4.8)

for (y; �) 2 Y

1

� �; where F

1

= F

�

1

2 L(Y

1

; Y

�1

); F

2

2 L(Y

1

;�) and F

3

= F

�

3

2 L(�;�):

The omplexi�ation of the quadrati form (4.8) is the Hermitian form F



de�ned on

Y



1

� �



by

F



(y; �) = (F



1

y; y)

Y



�1

;Y



1

+ 2Re (F



2

y; �)

�



+ (F



3

�; �)

�



: (4.9)

(A4) (Frequeny-domain ondition)

There exist numbers � > 0 and � > 0 suh that the following two properties hold:

a) F



(y; �) +G



(y; �)� �kM



yk

2

S



� 0 (4.10)

8 (y; �) 2 Y



1

� �



: 9! 2 R with i! y = (A



+ �I



)y +B



� ;

9



b) The funtional

J(y(�); �(�)) :=

Z

1

0

[F



(y(�); �(�)) +G



(y(�); �(�))� �kM



y(�)k

2

S



℄ d� (4.11)

is bounded from above on the set M

y

0

:=

n

y(�); �(�) : _y = (A



+ �I



)y +B



�; y(0) = y

0

; y(�) 2 W



1

; �(�) 2 L

2

(0;1; �



)

o

for any y

0

2 Y



0

; i.e., for any suh y

0

there exists a (y

0

) 2 R suh that

J(y(�); �(�)) � (y

0

):

Theorem 4.1 Suppose that there exist numbers � > 0 and Æ > 0 suh that the assump-

tions (A1) - (A4) are satis�ed for (2.2) - (2.5) with ' 2 N (F;G) and an observation

given by (3.2). Then the observation (3.2) is determining for the dissipativity of (2.4),

(2.5) with domain D given by (3.3).

Idea of the proof: We try to �nd an operator P = P

�

2 L(Y

�1

; Y

0

) \ L(Y

0

; Y

1

) with

(y; Py)

0

� 0 ; 8y 2 Y

0

; and numbers � > 0; � > 0 suh that for any solution y(�) of

(2.4), (2.5) and their assoiated generalized potential � from ondition (2.8) the integrated

inequality (3.1) is true on any time interval 0 < s < t; i.e.,

m(t)�m(s) + 2�

Z

t

s

m(�)d� +

Z

t

s

p(�)d� �

Z

t

s

g(�)d� : (4.12)

In (4.12) we have introdued the funtions

m(t) :=

1

2

�

y(t); P y(t)

�

0

+

1

2

�(y(t)) ; (4.13)

p(t) :=  (y(t))�  

�

y(t)� Py(t)

�

; (4.14)

and

g(t) := ��kMy(t)k

2

S

: (4.15)

In order to guarantee the inequality (4.12) we hoose an operator P = P

�

2 L(Y

�1

; Y

0

) \

L(Y

0

; Y

1

) and numbers � > 0; � > 0 suh that

(�(A+ �I)v �B�; Pv)

�1;1

� F (v; �) +G(v; �)� �kMvk

2

S

; 8y 2 Y

1

; 8� 2 � :

(4.16)

The existene of suh a P with (y; Py)

0

� 0 ; 8y 2 Y

0

; follows due to the assumptions

(A2) � (A4) from the in�nite-dimensional version of the Kalman-Yakubovih-Popov

10



Lemma (Frequeny Theorem [1, 11℄). From (2.4), (2.5) it follows with v := y(t) and

� := �(t) that

( _y(t); P y(t))

�1;1

+ �(y(t); P y(t))

0

� ((A + �I)y(t) + B�(t); P y(t))

�1;1

+ p(t) � 0 ;

a:a: t > 0 : (4.17)

Using the estimate (4.16) we derive from (4.17) the inequality

( _y(t); P y(t))

�1;1

+ �(y(t); P y(t))

0

+ F (y(t); �(t)) + G (y(t); �(t))

��kMy(t)k

2

S

+ p(t) � 0 ; a:a: t > 0 : (4.18)

Integration of (4.18) on the time interval 0 < s < t gives

1

2

(y(t); P y(t))

0

�

1

2

(y(s); P y(s))

0

+ �

Z

t

s

(y(�); P y(�))

0

d� +

Z

t

s

F (y(�); �(�))d�

+

Z

t

s

G(y(�); �(�))d� +

Z

t

s

p(�)d� � �

Z

t

s

kMv(t)k

2

S

d� : (4.19)

From the inequalities (2.7) and (2.8) it follows that

Z

t

s

F (y(�); �(�))d� � 0 (4.20)

and

Z

t

s

G(y(�); �(�))d� �

1

2

h

�

�

y(t)

�

� �

�

y(s)

�

i

+ �

Z

t

s

�(y(�))d� ; 0 < s < t : (4.21)

Taking into aount now (4.19) � (4.21) we obtain that

1

2

(y(t); P y(t))

0

+

1

2

�(y(t))�

1

2

(y(s); P y(s))

0

�

1

2

�(y(s)) (4.22)

+2�

Z

t

s

h

1

2

�

y(�); P y(�)

�

0

�

1

2

�

�

y(�)

�

i

d� +

Z

t

s

p(�)d� � �

Z

t

s

kMy(�)k

2

S

d� :

Now, we onlude that (4.22) implies the inequality (4.12) with the funtions m(�);

p(�) and g(�) de�ned by (4.13) � (4.15) .

Remark 4.1 The frequeny-domain ondition (A4) depends on imbedding properties of

the Sobolev spaes under onsideration. Assume, for example, that G � 0 and

F (y; �) = �

0

kyk

2

0

� �

1

kyk

2

1

; (y; �) 2 Y

0

� � ; (4.23)

where �

0

and �

1

are ertain real onstants.

In order to verify (4.10) we introdue the frequeny-domain harateristi

�(i!) := (i!I



� A



�

)

�1

B



(4.24)

for ! 2 R s. t. i! 2 �(A



�

) ; where A



�

:= A



+ �I



:

11



It follows that the frequeny-domain ondition (4.10) is satis�ed if

�

0

k�(i!)�k

2

Y



0

� �

1

k�(i!)�k

2

Y



1

� ÆkM



�(i!)�k

2

S



� 0 ;

8 � 2 �



; 8 ! 2 R : i! 2 �(A



�

) : (4.25)

Suppose now that from the imbedding Y



1

� Y



0

� Y



�1

and the properties of the observa-

tion operator M we have the a priori estimate

kvk

2

Y



0

� 

1

kvk

2

Y



1

+ 

2

"

M



kM



vk

2

S



; 8v 2 Y



1

; (4.26)

where 

1

> 0 and 

2

> 0 are ertain onstants and

"

M



= "

M



(Y



1

; Y



0

) := sup fkwk

Y



0

: w 2 Y



1

; M



w = 0

S



; kwk

Y



1

� 1g (4.27)

is the ompleteness defet of the observation operator M



with respet to the imbedding

Y



1

� Y



0

:

It follows from (4.26) that the frequeny-domain ondition (4.25) is satis�ed if

�

0



1

k�(i!)�k

2

Y



1

� �

1

k�(i!)�k

2

Y



1

+ �

0



2

"

M



kM



�(i!)�k

2

S



� �kM



�(i!)�k

2

S



� 0

8 � 2 �



; 8! 2 R : i! 2 �(A



�

) : (4.28)

For (4.28) it is su�ient that

�

0



1

� �

1

� 0 and �

0



2

"

M



� Æ � 0 : (4.29)

We see that if �

0



1

� �

1

� 0 the seond ondition of (4.29) is always satis�ed if the

ompleteness defet of the observation operator is small. In this ase, assuming that the

other assumptions for the Theorem 5.1 are also satis�ed, it follows that the observation

�(t) =My(t) is determining for the dissipativity .

Suppose that M

k

y := (l

1

(y); : : : ; l

k

(y)); where l

i

: Y

1

! R ; i = 1; : : : ; k; are ontinuous

linear funtionals and Y

1

= W

s;2

(
); Y

0

= W

�;2

(
) with s > �. Then "

M



� 

1

(



2

k

)

s��

,

i.e., the ompleteness defet of the observation operator M

k

depends on the smoothness

properties of the imbedding Y



1

� Y



0

(Triebel [14℄). �

5 Determining observations for seond-order viso-elasti

ontat problems

A typial fritional ontat problem is modeled by the following seond-order evolutionary

variational inequality (Duvant, Lions [4℄, Han, Sofonea [8℄, Jaru¥k, Ek [9℄): Find a

displaement funtion u suh that for a.a. t 2 [0; T ℄

(�u(t); v � _u(t))

V

�1

;V

1

+ (A _u(t); v � _u(t))

V

�1

;V

1

+

�

g

�

u(t)

�

; v � _u(t)

�

V

�1

;V

1

+ j(v)� j

�

_u(t)

�

� 0 ; 8 v 2 V

1

; (5.1)

u(0) = u

0

2 V

1

; _u(0) = v

0

2 V

0

: (5.2)
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Here V

1

� V

0

� V

�1

is a Hilbert spae rigging struture, A : V

1

! V

�1

is a linear

ontinuous operator whih is alled visosity operator.

The nonlinear map g : V

1

! V

�1

is the elastiity operator and j : V

1

! R

+

represents the

ontat funtional.

Under a solution u of (5.1), (5.2) on (0; T ) we understand a funtion u(�) 2 L

2

(0; T ;V

1

)

suh that _u(�) 2 L

2

(0; T ;V

1

); �u(�) 2 L

2

(0; T ;V

1

;

R

T

0

j( _u(�))d� < 1 ; and (5.1), (5.2) is

satis�ed for a.a. t 2 (0; T ):

Let us assume that for any (u

0

; v

0

) 2 V

1

�V

0

and any time T > 0 a solution of (5.1), (5.2)

exists. In order to rewrite (5.1), (5.2) as a �rst-order variational inequality (2.4), (2.5) we

de�ne the produt Hilbert spae rigging struture Y

1

� Y

0

� Y

�1

with

Y

0

= V

1

� V

0

; Y

1

= V

1

� V

1

; Y

�1

= V

0

� V

�1

: (5.3)

Let us introdue the new variables y

1

= u ; y

2

= _u and �

2

= v: It follows that _y

1

= y

2

and

_y

2

= �u: In this notation the variational inequality (5.1) an be rewritten as

( _y

2

; �

2

� y

2

)

V

�1

;V

1

+ (Ay

2

; �

2

� y

2

)

V

�1

;V

1

+

�

g(y

1

); �

2

� y

2

�

V

�1

;V

1

+j(�

2

)� j(y

2

) � 0 ; 8 �

2

2 V

1

; (5.4)

Using the produt topology we get for arbitrary y = (y

1

; y

2

) 2 Y

�1

= V

0

� V

�1

and

� = (�

1

; �

2

) 2 Y

1

= V

1

� V

1

the representation of the duality pairing on Y

�1

� Y

1

as

(y; �)

�1;1

= (y

1

; �

1

)

V

1

+ (y

2

; �

2

)

V

�1

;V

1

: (5.5)

It follows from (5.5) that

( _y

2

; �

2

� y

2

)

V

�1

;V

1

= ( _y; � � y)

�1;1

� (y

2

; �

1

� y

1

)

V

1

: (5.6)

A linear bounded operator A : Y

1

! Y

�1

is de�ned by

(�Ay; � � y)

�1;1

= �(y

2

; �

1

� y

1

)

V

1

+ (Ay

2

; �

2

� y

2

)

V

�1

;V

1

;

8 y = (y

1

; y

2

); � = (�

1

; �

2

) 2 Y

1

= V

1

� V

1

: (5.7)

It is easy to see that A de�ned by (5.7) has the representation

A =

�

0 I

0 �A

�

: (5.8)

In order to determine the linear operator B : � = V

1

! Y

�1

we use the equation

(�B'(y

1

); � � y)

�1;1

= ('(y

1

); �

2

� y

2

)

V

�1

;V

1

;

8 y = (y

1

; y

2

); � = (�

1

; �

2

) 2 Y

1

= V

1

� V

1

: (5.9)

From (5.9) it follows that

B'(Cy) =

�

0

�'(y

1

)

�

; (5.10)

where the linear operator C : Y

1

!W := V

1

is de�ned by (y

1

; y

2

) 7! y

1

:

The last remainig element in the inequality (2.4) is the ontat funtional

 : Y

1

! R

+

given by

 (y) := j(y

2

) ; 8 (y

1

; y

2

) 2 Y

1

= V

1

� V

1

: (5.11)
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