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1 Basic notation

Suppose that Yj is a real Hilbert space with (-, )¢ and || - ||o as scalar product resp. norm.
Suppose also that A : D(A) C Yy — Y} is an unbounded densely defined linear operator.
The Hilbert space Y7 is defined as D(A) equipped with the scalar product

(y,m1:= (BT = A)y, (B — A)n), , y,n € D(A), (1.1)

where 5 € p(A) NR (p(A) the resolvent set of A) is an arbitrary but fixed number.
The Hilbert space Y_; is by definition the completion of Y, with respect to the norm
|2]| -1 := [|(BT — A)~'z||o. Thus we have the dense and continuous imbeddings

Y, C YE) cY, (12)

which is called Hilbert space rigging structure. In this triple, Yy is the pivot space, Y; is
the interpolation space, and Y_; is the extrapolation space (Triebel [14]).

The “scalar product” (-,-)_y; on Y_; x Y is the unique extension by continuity of the
scalar product (-, ) defined on Yy x Y7.

If T > 0 is an arbitrary number we define the norm for Bochner measurable functions in
L*0,T;Y;), j =1,0,—1, through

lyCll2 = (/OT IIy(t)H?dt) " : (1.3)

Let Wr be the space of functions y(-) € L*(0,T;Y;) for which y(-) € L*(0,T;Y ;)
equipped with the norm

lyO)lbwr = Uy O + 15OE ) (1.4)

2 Evolutionary variational inequalities

Suppose Y7 C Yy C Y4 is a real Hilbert space rigging structure with A € £(Y;,Y ).
Assume that = and W are two real Hilbert spaces with scalar products (-, )=, (-, )w and
norms || - ||z, || - |lw, respectively.

Introduce the linear continuous operators

B:Z—-Y,, C:Y;—>= (2.1)
and define the set-valued map
o: W — 2% (2.2)
and the map
YY) > R U{+o0}. (2.3)

Note that in applications ¢ is a material law nonlinearity, 1 is a contact-type or friction
functional and w(t) = Cy(t) is the input of the nonlinearity. Consider the evolutionary
variational inequality with set-valued nonlinearity (Duvant, Lions [4])

2



(1 — Ay —BEn—y)—1a +¢(n) —(y) >0, Vnely, (2.4)

w(t) =Cy(t), &) € p(w(t),  y(0) =y €Y. (2:5)

Remark 2.1 In the contact free case when ¢ = 0 the evolutionary variational inequality

(2.4) — (2.5) is equivalent to an evolution equation with a set-valued nonlinearity ¢ given
by

j = Ay+BE in Y., :
w(t) = Cy(t),E(t) € p(w(t), y(0)=yo €Yo, (2.5)

Definition 2.1 A function y(-) € Wy N C(0,T;Yy), is said to be a solution of (2.4),
(2.5) on (0,T) if there exists a function £(+) € L*(0,T;Z) such that for a.a. t € (0,T) the
T

inequality (2.4), (2.5) is satisfied and [ (y(t))dt < +oo. The pair {y(-),&(-)} is called a
0

response of (2.4), (2.5); £(+) is an associated selection.

Suppose that F,G and H are quadratic forms on Y; x =. The class N'(F,G)(N (F,G, H))
of nonlinearities for (2.4), (2.5) consists of all maps (2.2) such that the condition a)
(conditions a) and b)) is (are) satisfied:

a) For any T > 0 and any two functions y(-) € L?(0,T;Y7) and
£(+) € L*(0,T; =) with

£(t) € p(Cy(t)), a.a. t €[0,T7], (2.6)
it follows that
F(y(t),£(t)) > 0, a.a.t €[0,7], (2.7)

and there exists a continuous function ® : Y7 — R (generalized potential) and numbers
A > 0 and v > 0 such that

[ Gtumemyar = 3 [ewm) - 2we)] + A [ vr

forall 0<s<t<T (2.8)

and

®(y) > llyllz, Yy €Yo, (2.9)



b) For any 7' > 0 and any two pairs of functions

yi() () € L0, T3 Y1) and &i(),&() € L*(0, T3 E)

with &i(t) € o(Cyi(t)), i=1,2, aa. tec[0,T],

it follows that H(yi(t) —y2(t),&1(t) — &(t) >0, aa. te[0,T]

(A1) For fixed linear operators A, B, C, fixed function (2.3), arbitrary yo € Yy, T >0
and ¢ € N(F,G,H)(¢p € N(F,G)) there exists a response {y(-),&(+)} of (2.4), (2.5).

Example 2.1 Suppose that 2 C R” is a domain with smooth boundary I' = 902,
h:T — R is a given scalar function (“outer pressure”) and u(zx,t) (“ inner pressure”) is a
solution of

M _Auin OxR. (2.10)
ot
subject to the boundary conditions
ou
u=h onI'xRy = —2>0, (2.11)
on
ou
u>h onI'xRy = —=0 (2.12)
on
and the initial condition
u(+,0) = ug. (2.13)

The system (2.10) — (2.13) describes the transfer problem of fluid acrossing a semi-
permeable membrane (Lions [12]).
Instead of (2.11) — (2.12) we consider the (nonlinear) boundary condition

ou
— > [' x 2.14
5, =9 on R, (2.14)
where g : R — R is a given function.
In order to get a representation of (2.10) — (2.14) in the form of a variational inequality

(2.4), (2.5) we introduce the spaces

Yo == L*(9),
Vi o= WR2(Q) = {ve LXQ): g” € L2(Q), i=1,2,...,n} and
T
== WY22(9Q).
An operator A € L(Y7,Y 1) is defined by
"L Ou Ov
A 11 = — —d v Y. 2.15
(Au,v)_14 /Q;(?xiaxi r, Yu,veY; (2.15)
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The operator B € L(Z,Y ;) is given by

(BE,y)-1q=— [ &udS, VE€E, Vye, (2.16)
onN

the nonlinear map ¢ : Y7 — = is given by
p(y(=)) =g )(z) on T, (2.17)
and the “contact functional” ¢ : Y7 — Ry U {400} is defined by

0 ifn(x)>h(x)onl,

v(n) = { +00 in other cases. (2.18)

Thus the transfer problem of fluid (2.10) — (2.14) can be considered as evolutionary
variational inequality

(y—Ay—B&, n—y)11+v(n) —v(y) >0, VneY, (2.19)

£(t) =¢(t), y(0)=yo€Yo. (2.20)

Let us describe the class N'(F, G) for (2.19), (2.20). We assume that the nonlinearity ¢
from (2.17) has the following two properties:

(H1) dpo >0 Vy,yp €Y1
0 < (Be(y) — Bo(ya), y1 — y2) 1,1 < piollyn — v2ll} - (2.21)

(H2) There exist a Fréchet differentiable map ® : Y; — R and a number A > 0 such that
with the Fréchet derivative ® € £(Yy, R) the inequality

(e(y),m)1 > @ (y)n+ AB(y), Vnen (2.22)
is satisfied.

It is clear that (2.21) and (2.22) can be considered as a monotonicity condition and a
potential-type condition, respectively. Using (2.21) we can introduce the quadratic form

F(y,{) = MO“y“% o (Bgay)fl,la (yaf) € le X E? (223)
which satisfies (2.7). The inequality (2.22) can be used to define the quadratic form
G(ya 6) = (GlAya 6)5 + (GZBfaf)E on le X = (224)

with G, : Y., — = (i = 1,2). It is easy to see that the form G from (2.24) and the
generalized potential ® from (2.22) satisfy the inequality (2.8) . O



3 Determining observations

a) Observations that are determining for the dissipativity

Suppose S is a real Hilbert space (observation space), M : Y, — S is a given linear
bounded operator (observation operator), P € L(Y_1,Yy) N L(Yy, Y1), P = P* in Yy, is
also given such that the following conditions are satisfied.

1) Vi(y) =3 (y,Py)o>0 , Vy€Yp;
2) V(y) :=Vi(y) + 1@ (y) > const - [[y||2, Vy€EYp;

3) There exist numbers A > 0 and pu > 0 such that for an arbitrary solution y(-) of
(2.4), (2.5) the function m(t) := V(y(t)) satisfies

m(t) + 2 m(t) + ¢y (1) — (=Py(t) + y(t)) < pl|My(@)][5, aat>0. (3.1)
Then the observation

o(t) = pl| My (t)[[5 (3:2)

is determining for the dissipativity with domain D of (2.4), (2.5), i.e., the property

t+1
/ IMy()|Zdr — 0 for ¢ — +o0
t

implies that
limsupm(t) < C and,

t——+o00

consequently, (2.4), (2.5) is (point) dissipative with domain of dissipativity

20} . (3.3)

D= {yero: vl <=

b) Observations that are determining for the complete deviation of arbitrary two solutions

Suppose M € L(Y7,S) is given as in a). Suppose also that there exist an operator
Pe L(Y 1,Y) NL(Y,, Y1), P =P in Y, , numbers \; > 0,a; > 0,0; >0 and py > 0
such that for arbitrary two solutions y;(+), y2(-) of (2.4), (2.5) the function

mi(t) = (10 = 9200, Pr(a(0) = 2(1)) )
satisfies for a.a. ¢ > 0 the inequality

my(t) + 2 ma(t) + Py (1) — v (t) — Pu(yz(t) — vi(t)))
—P(y2(t) + Pi(yi(t) — y2(t))) + ¢ (y2(2)) (3.4)
+oulle™ (i (t) — w2 ()5 < mllM (y1 () — v ()5 -

Then the observation oi(t) = pui||M(yi(t) — y2(t))||% is determining for the complete
deviation y, (t) — yo(t) , i.e. , the property
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/:Jrl | M (y1(7) — y2(T))||3dT — 0 for ¢ — +o0 (3.5)

implies that for a.a. t > 0

ly1(£) = m2(B)15 < ere®[ly1 (0) — y2(0)]l5 (3.6)

where ¢; > 0 is a certain constant not depending on the solutions.
The inequality (3.6) follows from (3.4) since

AmH‘MWJﬂ—mWM@ﬁ<+ﬁl (3.7)

c¢) Observations that are determining for the convergence in a subspace of codimension n

Suppose M € L(Y7,S) is given as in a). Suppose also that there exist an operator
Py, e L(Y_1,Yy) N L(Y,, Y1), P, = P in Yy, a natural number n, numbers Ay > 0,
az >0, 02 > 0 and pp > 0 such that for arbitrary two solutions y;(+), y2(+) of (2.4), (2.5)

the function
ma(t) == (y1(t)) — y2(t), Pa(y1(t) — 42(2)))o

satisfies for a.a. t > 0 the inequality

s (t) +2 Aama(t) + ¢ (y1 (1) — ¥ (11(t) — Pa(ya(t) — y1(¢)))
—h(ya(t) + Pa(yi(t) — y2(t))) + ¥(y2(t))
+0alle” (1 — ) (1.(t) — y2(O)I5 < p2llM (31(t) — 32 (D) |15 - (3.8)

Then the observation o9 (t) := || M (y1(t) — y2(t))||% is determining for the convergence
in a subspace of Y1 of codimension n, i.e., the property

/tt+ | M (y1(7) — yo (7)) |5 dT — 0 for t— 400 (3.9)

implies that for a.a. t > 0

(1 = 7)1 (1) — g2 ()5 < c2e”**[|2(0) — y2(0)[5 . (3.10)

where ¢, > 0 is a certain constant not depending on the solutions. Again the inequality
(3.10) follows from (3.8) since

AmH”%M)—WQMﬁﬁ<+w- (3.11)

Remark 3.1 Determining observations (also called “determining functionals”) are intro-
duced by Foias and Prodi ([5]), Ladyzhenskaya (|10]), Foias and Temam (|6]), Chueshov
(|2, 3]). Inverse problems for variational inequalities (parameter identification problems)
are considered by Hoffmann and Sprekels ([7]), Maksimov ([13]) and other authors. [
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Theorem 3.1 Suppose that for the variational inequality (2.4), (2.5) there exist obser-
vations that are determining for the dissipativity with domain D, determining for the
complete deviation and determining for the convergence in a subspace of codimension n,
respectively. Then any positively invariant for (2.4), (2.5) compact set in D has a finite
fractal dimension.

Idea of proof: The inequalities (3.1), (3.6) and (3.10) are the essential sufficient parts
for the use of Ladyzhenskaya’s theorem (see also Chuesov’s version of this theorem in [2]).

Theorem 3.2 ([10]) Suppose K is a compact set in the Hilbert space (Y, || - ]) and
g: K — g(K) is a continuous map with KK C g (K) and such that

lg(y) =gl <y =nll, (1 =m)(9(y) — gl < dlly —nll, VYy,neY.

Herel > 0,0 < q < 1 are constants, m, is the orthoprojector in Y on a subspace of
dimension n.

Then dimp/C <n In

20212 2
v <l

-1
T o q2> (v is an absolute constant).

4 Frequency-domain conditions for the existence of de-
termining observations

We consider the existence problem for observations that are determining for dissipativity.
The existence of observations which are determining for the complete deviation of two
solutions and which are determining for the convergence in a subspace of codimension n
can be shown similarly.

Our goal is to find effective conditions for the existence of Lyapunov-type functions V'
satisfying a) — c) in the Section 4. A general approach consists in using the Frequency
Theorem which is also called Kalman-Yakubovich-Popov Lemma (KYP Lemma [1, 11]).
Let us state the assumptions for this theorem.

(A2) There exists a number A > 0 such that for any 7' > 0 and any f € L*(0,7;Y_;) the
problem

y=(A+Ay+ f(t), y(0) = wo (4.1)

is well-posed, i.e., for arbitrary yo € Yy, f(+) € L?(0,T;Y_,) there exists an unique solution
y(-) € Wr satisfying (4.1) in the sense that

(@) 11 =((A+ADy,n) 11+ (f(t),n)-11, VneEYy, aa tel0,T], (4.2)

and depending continuously on the initial data, i.e.,

Iy, < erllvollg + e2ll FOI5, - (4.3)



where ¢; > 0 and ¢ > 0 are some constants. Furthermore, any solution of

y=(A+ )y, y(0)=yo (4.4)

is exponentially decreasing for ¢ — 400 , i.e., there exist constants c3 > 0 and € > 0 such
that

ly(@)]lo < ese™lyollo, > 0. (4.5)

(A3) There exists a number A > 0 such that the operator A+ A\I € L(Y7,Y_;) is regular,
i.e., forany T > 0,yp € Y1,2r € Y1 and f € L?*(0,T;Y}) the solutions of the direct problem

y=A+A)y+f(t), y0)=w, aatel0,T], (4.6)
and of the dual problem
Z=—(A+ )2+ f(t), 2(0)=zpr, aa.te]l0,T], (4.7)
are strongly continuous in ¢ in the norm of Y;.

In the next assumption which is called frequency-domain condition it is necessary to
consider the complexification of spaces and linear operators under consideration.

The elements of the complexification Y[ of the real Hilbert space Y, can be written as x+iy
with z,y € Y, and the inner product of Y will be denoted by (-, -)ye. The complexification
of the other spaces are defined in a similar way. For the linear operator A :Y; — Y_; we
denote by A the linear operator A°: Y" — Y, defined by A°(x+iy) = Az +iAy. Again,
the complexification of the other linear operators which will appear below, is defined in a
similar way.

Consider now the complexification of the quadratic form F' (similarly of G). Suppose that

F(y,8) = (Fiy,y) 11 + 2(Foy, §)= + (F36, &)= (4.8)
for (y,£) € Y1 x £, where Fy = F}f € L(Y1,Y_1), F> € L(Y1,Z) and F3 = F; € L(E,2).
The complexification of the quadratic form (4.8) is the Hermitian form F*° defined on

Y x =¢ by

Fe(y, &) = (FYy, y)ve,vp + 2Re (F3y, &)=c + (F5€, )= (4.9)

(A4) (Frequency-domain condition)
There exist numbers A > 0 and p > 0 such that the following two properties hold:

a) Fe(y,€) + G(y,€) — u| My||5 < 0 (4.10)

V(y,6) e VExE:JweR with iwy= (A4 M)y + B°¢;



b) The functional

2 ]dr  (4.11)

J(y(-),&() = /OOO[F”(y(T),f(T)) + G (y(7),&(7)) — pllM y(r)
is bounded from above on the set M, :=

{y(-),f(-) Ly = (A°+ M)y + B°E, y(0) = yo, y(-) € WL, £() € L*(0, 00; 50)}

for any yo € Yy, i.e., for any such y, there exists a y(yo) € R such that
J(y(-),€()) < v(wo)-

Theorem 4.1 Suppose that there exist numbers A > 0 and 0 > 0 such that the assump-
tions (A1) - (A4) are satisfied for (2.2) - (2.5) with ¢ € N(F,G) and an observation
given by (3.2). Then the observation (3.2) is determining for the dissipativity of (2.4),
(2.5) with domain D given by (3.3).

Idea of the proof: We try to find an operator P = P* € L£(Y_1,Yy) N L(Yp, Y)) with
(y,Py)o > 0, Vy €Yy, and numbers A > 0, > 0 such that for any solution y(-) of
(2.4), (2.5) and their associated generalized potential ® from condition (2.8) the integrated
inequality (3.1) is true on any time interval 0 < s < t, i.e.,

m(#) — m(s) + 2) /stm(T)dT—F/:p(T)dT < /stg(T)dT. (4.12)
In (4.12) we have introduced the functions
m(t) = 5 (u(2). Py(t), + 52(u(0)). (413)
p(t) = (y(t) — d(y(t) — Py(t)) (4.14)
and
g(t) == — pl|My()|I% . (4.15)

In order to guarantee the inequality (4.12) we choose an operator P = P* € L(Y 1,Y5) N
L(Yy,Y7) and numbers A > 0, u > 0 such that

(=(A+A)v = B¢ Po)oiy > F(v, Q)+ G(v, () — pl|Mulls, VyeYi, V(eE.
(4.16)

The existence of such a P with (y, Py)o > 0, Vy € Yj, follows due to the assumptions
(A2) — (A4) from the infinite-dimensional version of the Kalman-Yakubovich-Popov
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Lemma (Frequency Theorem [1, 11]). From (2.4), (2.5) it follows with v := y(¢) and
¢ = £(t) that

(1), Py(t))-11 + My(t), Py(t))o — (A + ADy(t) + BE(t), Py(t)) 11 +p(t) <0,
aa.t>0. (4.17)

Using the estimate (4.16) we derive from (4.17) the inequality

(), Py(t)) 11 + Ay(t), Py(t))o + F(y(t), £() + G (y(2),£(1))
—ul|My@®)|%+pt) <0, aa.t>0. (4.18)

Integration of (4.18) on the time interval 0 < s < t gives
S0Py = 5. Pyo+ A [ (wr). Pyt + [ Flu(r).(r)ar
+/ G(y(T),g(T))dT+/ p(r)dr < u/ IMo(t)|2dr - (4.19)

From the inequalities (2.7) and (2.8) it follows that

[ P, enar =0 (4.20)

and
/ G(y(7),&(r))dr > %[@(y(t)) - <I>(y(s))] +)\/ d(y(r))dr, 0<s<t. (4.21)

Taking into account now (4.19) — (4.21) we obtain that

1 1

SO, Pyt)o + 38((0) = 50(5), Pyls)o — 38 (u(5) (1.2)

w21 [ [0 o), - 30 (ue)]ar+ [ priar < [ 1ty

Now, we conclude that (4.22) implies the inequality (4.12) with the functions m(-),
p(+) and g¢(-) defined by (4.13) — (4.15) .

Remark 4.1 The frequency-domain condition (A4) depends on imbedding properties of
the Sobolev spaces under consideration. Assume, for example, that G = 0 and

F(y,&) = Bollylls — Bullyllt . (v,€) € Yox E, (4.23)

where 3y and (3; are certain real constants.
In order to verify (4.10) we introduce the frequency-domain characteristic

x(iw) == (iwl® — A5) 'B° (4.24)

for w € Rs. t. iw € p(A§), where A§ := A+ \I°
11



It follows that the frequency-domain condition (4.10) is satisfied if
Bollx (i)Y — Billx(iw)€|

ve — OIM x(iw)¢[l5- <0,
VEEE, VweR: wep(A). (4.25)

Suppose now that from the imbedding Y}" C Y C Y%, and the properties of the observa-
tion operator M we have the a priori estimate

||v||§,0c < cl||v||§/lc + coeppe| [ M 0|3, Vv € YF, (4.26)

where ¢; > 0 and ¢y > 0 are certain constants and

enve = enre (Y5, YY) i=sup {||w|lye : w € Y, Mw = Oge , [|w]lye < 1} (4.27)

is the completeness defect of the observation operator M€ with respect to the imbedding
Ye C Yy,
It follows from (4.26) that the frequency-domain condition (4.25) is satisfied if

Bo erlIx(iw)éllye — Bullx(iw)€lle + Bocaenre M X(iw)llge — pl M (iw)€[5e < 0
VEE=E, YweR :: iwe p(A]). (4.28)

For (4.28) it is sufficient that
5001—51 SO and /BOCQSMC_(SSO. (429)

We see that if fyc; — 1 < 0 the second condition of (4.29) is always satisfied if the
completeness defect of the observation operator is small. In this case, assuming that the
other assumptions for the Theorem 5.1 are also satisfied, it follows that the observation
o(t) = My(t) is determining for the dissipativity .

Suppose that My := (I1(y),. .. ,lk(y)), where [; : Y1 = R, i =1,...  k, are continuous
linear functionals and Y} = W**(Q),Y, = W?*(Q) with s > 0. Then ey ~ ¢;(¢)57,
i.e., the completeness defect of the observation operator M, depends on the smoothness
properties of the imbedding Y* C Y (Triebel [14]). O

5 Determining observations for second-order visco-elastic
contact problems

A typical frictional contact problem is modeled by the following second-order evolutionary
variational inequality (Duvant, Lions [4], Han, Sofonea [8], Jarucek, Eck [9]): Find a
displacement function u such that for a.a. t € [0, 7]

(6(t), v —w(t))v_ v + (Aw(t), v —a(t))v_,
+ (g(u(t)),v - a(t))v LTI i) 20, Veew, (5.1)

-1,

U(O) = Ug € V1 y U(O) =1 € V() . (52)
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Here V; C V, C V_; is a Hilbert space rigging structure, A : V; — V1 is a linear
continuous operator which is called wviscosity operator.
The nonlinear map g : V; — V_; is the elasticity operator and j : V; — R, represents the

contact functional.

Under a solution u of (5.1), (5.2) on (0,7) we understand a function u(-) € L*(0,T; V)
such that a(-) € L?(0,T; V), ii(-) € L*(0,T; Wy, [ j(a(r))dr < oo, and (5.1), (5.2) is
satisfied for a.a. t € (0,T).

Let us assume that for any (ug,vg) € Vi x Vy and any time 7' > 0 a solution of (5.1), (5.2)
exists. In order to rewrite (5.1), (5.2) as a first-order variational inequality (2.4), (2.5) we
define the product Hilbert space rigging structure Y; C Yy C Y_; with

YE):V1XVO, Yi:V1XV1, Y_1:V0><V_1. (53)

Let us introduce the new variables y; = u, y» = @ and 17, = v. It follows that y; = y, and
o = @. In this notation the variational inequality (5.1) can be rewritten as

(3)2a N2 — y2)v_1,v1 + (Ay27 N2 — y2)v_1,v1 + (g(yl), No — yQ)V_hv1
+j(n2) — j(y2) 20, Vna € Vi, (5.4)

Using the product topology we get for arbitrary y = (yi,42) € Y1 = Vo x V_; and
n = (n,n2) € Y1 =V, x V; the representation of the duality pairing on Y_; x Y] as

(yom) 11 = (Y, m)w, + (W2, m2)v_, v, - (5.5)
It follows from (5.5) that

(92, N2 — y2)v71,v1 = (?J, n— ?J)—1,1 - (yQ, m — y1)v1 . (5-6)
A linear bounded operator A : Y7 — Y_; is defined by

(—Ay, n— y)71,1 = —(y2, m — yl)vl + (Ayza o — y2)v_1,v1 )

Vy:(ylayZ)aﬁ:(ﬁ1,ﬁ2)EY1:V1><V1- (57)
It is easy to see that A defined by (5.7) has the representation
0 I
A—[O _A]- (5.8)

In order to determine the linear operator B : = = V; — Y_; we use the equation

(=Be(y1),n —y)-11 = ((y1), 12 — Y2)v_1. 115
Vy=(yi,92),n=(m,m) €Y1 =V xV. (5.9)

From (5.9) it follows that

Byp(Cy) = { —w(zyl) ] , (5.10)

where the linear operator C' : Y7 — W := V) is defined by (y1,y2) — v1 -

The last remainig element in the inequality (2.4) is the contact functional
Y Yy — Ry given by

b(y) =3(y2), ¥ (y1,52) €Y1 =V x Vi (5.11)
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