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1 Basi notation

Suppose that Y

0

is a real Hilbert spae with (�; �)

0

and k � k

0

as salar produt resp. norm.

Suppose also that A : D(A) � Y

0

! Y

0

is an unbounded densely de�ned linear operator.

The Hilbert spae Y

1

is de�ned as D(A) equipped with the salar produt

(y; �)

1

:= ((�I � A)y; (�I � A)�)

0

; y; � 2 D(A) ; (1.1)

where � 2 �(A) (the resolvent set of A) is an arbitrary but �xed number.

The Hilbert spae Y

�1

is by de�nition the ompletion of Y

0

with respet to the norm

kzk

�1

:= k(�I � A)

�1

zk

0

: Thus we have the dense and ontinuous imbeddings

Y

1

� Y

0

� Y

�1

(1.2)

whih is alled Hilbert spae rigging struture. In this triple, Y

0

is the pivot spae, Y

1

is

the interpolation spae, and Y

�1

is the extrapolation spae (Triebel [14℄).

The duality produt (�; �)

�1;1

on Y

�1

�Y

1

is the unique extension by ontinuity of the salar

produt (�; �)

0

de�ned on Y

0

� Y

1

:

If T > 0 is an arbitrary number we de�ne the norm for Bohner measurable funtions in

L

2

(0; T ;Y

j

) ; j = 1; 0;�1; through

ky(�)k

2;j

:=

�

Z

T

0

ky(t)k

2

j

dt

�

1=2

: (1.3)

Let W

T

be the spae of funtions y(�) 2 L

2

(0; T ;Y

1

) for whih _y(�) 2 L

2

(0; T ;Y

�1

)

equipped with the norm

ky(�)k

W

T

:= (ky(�)k

2

2;1

+ k _y(�)k

2

2;�1

)

1=2

: (1.4)

2 Evolutionary variational inequalities

Suppose Y

1

� Y

0

� Y

�1

is a real Hilbert spae rigging struture with A 2 L(Y

1

; Y

�1

):

Assume that � and W are two real Hilbert spaes with salar produts (�; �)

�

; (�; �)

W

and

norms k � k

�

; k � k

W

, respetively.

Introdue the linear ontinuous operators

B : �! Y

�1

; C : Y

�1

! � (2.1)

and de�ne the set-valued map

' : R

+

�W ! 2

�

(2.2)

and the map

 : Y

1

! R

+

[ f+1g : (2.3)

Consider the evolutionary variational inequality (Duvant, Lions [4℄)

( _y � Ay � B�; � � y)

�1;1

+  (�)�  (y) � 0 ; 8� 2 Y

1

; (2.4)
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w(t) = Cy(t) ; �(t) 2 '(t; w(t)) ; y(0) = y

0

2 Y

0

: (2.5)

Note that in appliations ' is a material law nonlinearity,  is a ontat-type or frition

funtional and w(t) = Cy(t) is the output of the inequality.

In the ontat free ase when  � 0 the evolutionary variational inequality (2.4) � (2.5)

is equivalent to an evolution equation with a set-valued nonlinearity ' given by

_y = Ay + B� in Y

�1

; (2:4)

0

w(t) = Cy(t) ; �(t) 2 '(t; w(t)) ; y(0) = y

0

2 Y

0

: (2:5)

0

A funtion y(�) 2 W

T

is said to be a solution of (2.4), (2.5) on (0; T ) if there exists

a funtion �(�) 2 L

2

(0; T ; �) suh that for a.a. t 2 (0; T ) the inequality (2.4), (2.5) is

satis�ed and

T

R

0

 (y(t))dt < +1: The pair fy(�); �(�)g is alled a response of (2.4), (2.5);

�(�) is an assoiated seletion.

Remark 2.1 (Lions [12℄) W

T

an be ontinuously imbedded into the spae C

T

of on-

tinuous mappings [0; T ℄ ! Y

0

equipped with the norm ky(�)k

C

T

:= sup

t2[0;T ℄

ky(t)k

0

: Thus,

every funtion from W

T

, properly altered by some set of measure zero, is a ontinuous

funtion [0; T ℄! X

0

and ky(�)k

C

T

� onstky(�)k

W

T

:

It follows that the value of a funtion y(�) 2 W

T

at the point t = 0 has a meaning and

the initial ondition (2.5) is well-posed. �

Suppose that F and G are two quadrati forms on Y

1

� �. The lass N (F;G) of nonlin-

earities for (2.4), (2.5) onsists of all maps (2.2) suh that the following two onditions

are satis�ed:

a) For any T > 0 and any two pairs of funtions y

1

(�); y

2

(�) 2 L

2

(0; T ;Y

1

) and

�

1

(�); �

2

(�) 2 L

2

(0; T ; �) with

�

i

(t) 2 '(t; Cy

i

(t)) ; for a.a. t 2 [0; T ℄ (2.6)

it follows that

F (y

1

(t)� y

2

(t); �

1

(t)� �

2

(t)) � 0 ; a:a: t 2 [0; T ℄ : (2.7)

b) For any T > 0 and any two pairs of funtions

y

1

(�); y

2

(�) 2 L

2

(0; T ;Y

1

) and �

1

(�); �

2

(�) 2 L

2

(0; T ; �)

satisfying (2.6) there exist a ontinuous funtion � : W ! R (generalized potential) and

a number  > 0 (both may be depending on the given funtions) suh that

t

Z

s

G

�

y

1

(�)� y

2

(�); �

1

(�)� �

2

(�)

�

d� �

1

2

h

�(Cy

1

(t)� Cy

2

(t))� �(Cy

1

(s)� Cy

2

(s))

i

+ �

Z

t

s

�(Cy

1

(�)� Cy

2

(�))d� for all 0 � s < t � T (2.8)
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and

�(Cy

1

(t)� Cy

2

(t)) � kCy

1

(t)� Cy

2

(t)k

2

W

; for a.a. t 2 [0; T ℄ : (2.9)

(A1) For �xed linear operators A;B;C; �xed funtion (2.3) and arbitrary y

0

2 Y

0

; T > 0

and ' 2 N (F;G) there exists a response fy(�); �(�)g of (2.4), (2.5).

Example 2.1 Suppose that 
 � R

n

is a domain with smooth boundary � = � 
 ;

h : �! R is a given salar funtion (�outer pressure�) and u(x; t) (� inner pressure�) is a

solution of

�u

�t

= 4u in 
� R

+

(2.10)

subjet to the boundary onditions

u = h on �� R

+

)

�u

�n

� 0 ; (2.11)

u > h on �� R

+

)

�u

�n

= 0 (2.12)

and the initial ondition

u(�; 0) = u

0

: (2.13)

The system (2.10) � (2.13) desribes the transfer problem of �uid arossing a semi-

permeable membrane (Lions [12℄).

Instead of (2.11) � (2.12) we onsider the (nonlinear) boundary ondition

�u

�n

� g on �� R

+

; (2.14)

where g : R ! R is a given funtion.

In order to get a representation of (2.10) � (2.14) in the form of a variational inequality

(2.4), (2.5) we introdue the spaes

Y

0

:= L

2

(
) ;

Y

1

:= W

1;2

(
) = fv 2 L

2

(
) :

�v

�x

i

2 L

2

(
) ; i = 1; 2; : : : ; ng and

� := W

�1=2;2

(�
) :

An operator A 2 L(Y

1

; Y

�1

) is de�ned by

(Au; v)

�1;1

= �

Z




n

X

i=1

�u

�x

i

�v

�x

i

dx ; 8u; v 2 Y

1

: (2.15)
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The operator B 2 L(�; Y

�1

) is given by

(B�; y)

�1;1

= �

Z

�


�ydS ; 8� 2 � ; 8y 2 Y

1

; (2.16)

the nonlinear map ' : Y

1

! � is given by

'(y(x)) := g (y)(x) on � ; (2.17)

and the �ontat funtional�  : Y

1

! R

+

[ f+1g is de�ned by

 (�) :=

�

0 if �(x) � h(x) on � ;

+1 in other ases.

(2.18)

Thus the transfer problem of �uid (2.10) � (2.14) an be onsidered as evolutionary

variational inequality

( _y � Ay � B� ; � � y)

�1;1

+  (�)�  (y) � 0 ; 8� 2 Y

1

; (2.19)

�(t) = '(y(t)) ; y(0) = y

0

2 Y

0

: (2.20)

Let us desribe the lass N (F;G) for (2.19), (2.20). We assume that the nonlinearity '

from (2.17) has the following two properties:

(H1) 9�

0

> 0 8y

1

; y

2

2 Y

1

:

0 � (B'(y

1

)� B'(y

2

) ; y

1

� y

2

)

�1;1

� �

0

ky

1

� y

2

k

2

1

: (2.21)

(H2) There exist a Fréhet di�erentiable map � : Y

0

! R and a number � > 0 suh that

with the Fréhet derivative �

0

2 L(Y

0

;R) the inequality

('(y); �)

1

� �

0

(y)� + ��(�) ; 8� 2 Y

1

(2.22)

is satis�ed.

It is lear that (2.21) and (2.22) an be onsidered as a monotoniity ondition and a

potential-type ondition, respetively. Using (2.21) we an introdue the quadrati form

F (y; �) := �

0

kyk

2

1

� (B�; y)

�1;1

; (y; �) 2 Y

1

� � ; (2.23)

whih satis�es (2.7). The inequality (2.22) an be used to de�ne the quadrati form

G(y; �) := (G

1

Ay; �)

�

+ (G

2

B�; �)

�

on Y

1

� � (2.24)

with G

i

: Y

�1

! � (i = 1; 2): It is easy to see that the form G from (2.24) and the

generalized potential � from (2.22) satisfy the inequality (2.8) . �
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3 Observations that ompletely determine the

asymptoti behaviour of an output

Assume that Z is a real Hilbert spae with norm k � k

Z

and

D : Y

1

! Z ; E : �! Z (3.1)

are linear bounded operators whih are alled observation operators with respet to the

observation spae Z. If fy(�); �(�)g is an arbitrary response of (2.4), (2.5) then

z(�) = Dy(�) + E �(�) : R

+

! Z (3.2)

with z(�) 2 L

2

lo

(R

+

; Z) is an observation (measurement or time series) of the response.

Suppose that � � 0 is a number. The observation (3.2) is determining for the output

�-onvergene in (2.4), (2.5) if for any two responses fy

1

(�); �

1

(�)g and fy

2

(�); �

2

(�)g of

(2.4), (2.5) from

Z

t+1

t

kD(y

1

(�)� y

2

(�)) + E(�

1

(�)� �

2

(�))k

2

Z

d� ! 0 for t! +1 (3.3)

it follows that

lim sup

t!+1

kC(y

1

(t)� y

2

(t))k

W

� � (3.4)

(Foias, Prodi [5℄, Ladyzhenskaya [10℄, Foias, Temam [6℄, Chuesov [2, 3℄). Inverse prob-

lems for variational inequalities (parameter identi�ation) are onsidered by Ho�mann,

Sprekels [7℄, Maksimov [13℄ and other authors.

Example 3.1 Suppose that fy(�); �(�)g is an arbitrary response of the membrane problem

(2.19) � (2.20). The following operators an be used as observation operators (with

E = 0; y(�) = u(x; �) an arbitrary solution) :

a) Z = R ; z(t) = Dy(t) =

Z




u(x; t)dx ; t > 0 ; (3.5)

b) Z = R ; z(t) = u(x

0

; t) ; t > 0 ; x

0

2 
 �xed; (3.6)

) Z = R

N

;

�


 =

N

[

j=1

�




j

; 


i

\ 


j

= ; ; i 6= j ;

�

j

(�) 2 L

1

(


j

) ; �

j

(x) � 0 in 


j

; j = 1; : : : ; N ;

z(t) =

�

Z




1

�

1

(x)u(x; t)dx; : : : ;

Z




N

�

N

(x)u(x; t)dx

�

; t > 0 : (3.7)

Then, for example, z from b) is determining for the �-onvergene of the full output in

(2.19) � (2.20) if for arbitrary solutions u

1

(x; t) and u

2

(x; t) it follows from

Z

t+1

t

(u

1

(x

0

; �)� u

2

(x

0

; �))

2

d� ! 0 for t! +1

that

lim sup

t!+1

ku

1

� u

0

k = lim sup

t!+1

�

Z




(u

1

(x; t)� u

2

(x; t))

2

dx

�

1=2

� �:

�
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4 Lyapunov-type approah for the onstrution of de-

termining observations

Suppose that two arbitrary responses fy

1

(�); �

1

(�)g and fy

2

(�); �

2

(�)g of (2.4), (2.5) are

given. We want to �nd observation operators D and E satisfying (3.1) and an energy-type

operator P = P

�

2 L(Y

�1

; Y

0

)\L(Y

0

; Y

1

) suh that the following onditions are satis�ed.

a) V

1

(y) :=

1

2

(y; Py)

0

� 0 ; 8y 2 Y

0

;

b) V (y

1

(t)� y

2

(t)) := V

1

(y

1

(t)� y

2

(t)) +

1

2

� (Cy

1

(t)� Cy

2

(t))

� onst:kCy

1

(t)� Cy

2

(t)k

2

W

for a.a. t � 0; where � is a generalized potential for the given pairs of responses;

) There exists a number � > 0 suh that the funtions m(t) := V (y

1

(t)� y

2

(t));

g(t) := kD(y

1

(t)�y

2

(t)+E(�

1

(t)��

2

(t))k

2

Z

and a funtion p (�) 2 L

1

(R

+

;R

+

) satisfy

the inequality

_m(t) + 2�m(t) + p (t) � g(t) ; a:a: t � 0: (4.1)

Sine

1

R

0

p(�)d� � �

1

with some 0 < 

1

< +1 and lim

t!+1

t+1

R

t

g(�)d� = 0, we get from

(4.1) that lim sup

t!+1

m(t) �



1

2�

; i.e., lim sup

t!+1

V

1

(y

1

(t)� y



(t)) +

1

2

�(Cy

1

(t)� Cy

2

(t)) �



1

2�

and, using (2.9) and the property a)

lim sup

t!+1

kCy

1

(t)� Cy

2

(t)k

W

�

�



1

�

�

1=2

=: � (4.2)

It follows that the observation z(�) = Dy(�) + E�(�) is determining for the output �-

onvergene with � from (4.2). If the ontat funtional satis�es  � 0, i.e. the evolution

inequality (2.4), (2.5) is equivalent to the evolution equation (2:4)

0

; (2:5)

0

, the onsidered

observation is determining for the output onvergene in the usual sense.

5 Frequeny-domain methods for the onstrution of

determining observers

Our goal is to �nd e�etive onditions for the existene of Lyapunov-type funtions V

satisfying a) � ) in the Setion 4. A general approah onsists in using the Frequeny

Theorem whih is also alled Kalman-Yakubovih-Popov Lemma (KYP Lemma [1, 11℄).

Let us state the assumptions for this theorem.

(A2) There exists a number � > 0 suh that for any T > 0 and any f 2 L

2

(0; T ;Y

�1

) the

problem

_y = (A + �I)y + f(t) ; y(0) = y

0

(5.1)

7



is well-posed, i.e., for arbitrary y

0

2 Y

0

; f(�) 2 L

2

(0; T ;Y

�1

) there exists an unique solution

y(�) 2 W

T

satisfying (5.1) in the sense that

( _y; �)

�1;1

= ((A+ �I)y; �)

�1;1

+ (f(t) ; �)

�1;1

; 8� 2 Y

1

; a:a: t 2 [0; T ℄ ; (5.2)

and depending ontinuously on the initial data, i.e.,

ky(�)k

2

W

T

� 

1

ky

0

k

2

0

+ 

2

kf(�)k

2

2;�1

; (5.3)

where 

1

> 0 and 

2

> 0 are some onstants. Furthermore, any solution of

_y = (A + �I)y; y(0) = y

0

(5.4)

is exponentially dereasing for t! +1 , i.e., there exist onstants 

3

> 0 and " > 0 suh

that

ky(t)k

0

� 

3

e

�"t

ky

0

k

0

; t > 0 : (5.5)

(A3) There exists a number � > 0 suh that the operator A+�I 2 L(Y

1

; Y

�1

) is regular,

i.e., for any T > 0; y

0

2 Y

1

; z

T

2 Y

1

and f 2 L

2

(0; T ;Y

0

) the solutions of the diret problem

_y = (A+ �I)y + f(t); y(0) = y

0

; a:a: t 2 [0; T ℄ ; (5.6)

and of the dual problem

_z = �(A + �I)

�

z + f(t); z(0) = z

T

; a:a: t 2 [0; T ℄ ; (5.7)

are strongly ontinuous in t in the norm of Y

1

.

In the next assumption whih is alled frequeny-domain ondition it is neessary to

onsider the omplexi�ation of spaes and linear operators under onsideration.

The elements of the omplexi�ation Y



0

of the real Hilbert spae Y

0

an be written as x+iy

with x; y 2 Y

0

, and the inner produt of Y



0

will be denoted by (�; �)

Y



0

: The omplexi�ation

of the other spaes are de�ned in a similar way. For the linear operator A : Y

1

! Y

�1

we

denote by A



the linear operator A



: Y



1

! Y



�1

de�ned by A



(x+ iy) = Ax+ iAy: Again,

the omplexi�ation of the other linear operators whih will appear below, is de�ned in a

similar way.

Consider now the omplexi�ation of the quadrati form F (similarly of G). Suppose that

F (y; �) = (F

1

y; y)

�1;1

+ 2(F

2

y; �)

�

+ (F

3

�; �)

�

(5.8)

for (y; �) 2 Y

1

� �; where F

1

= F

�

1

2 L(Y

1

; Y

�1

); F

2

2 L(Y

1

;�) and F

3

= F

�

3

2 L(�;�):

The omplexi�ation of the quadrati form (5.8) is the Hermitian form F



de�ned on

Y



1

� �



by

F



(y; �) = (F



1

y; y)

Y



�1

;Y



1

+ 2Re (F



2

y; �)

�



+ (F



3

�; �)

�



: (5.9)
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(A4) (Frequeny-domain ondition)

There exist numbers � > 0 and Æ > 0 suh that the following two properties hold:

a) F



(y; �) +G



(y; �)� ÆkD



y + E



�k

2

Z



� 0 (5.10)

for all suh (y; �) 2 Y



1

� �



for that there exists an

! 2 R with i! y = (A



+ �I



)y +B



y ;

b) The funtional

J(y(�); �(�)) :=

Z

1

0

[F



(y(�); �(�)) +G



(y(�); �(�))� ÆkD



y(�) + E



�(�)k

2

Z



℄d� (5.11)

is bounded from above on the set

M

y

0

:=

n

y(�); �(�) : _y = (A



+ �I



)y +B



�;

y(0) = y

0

; y(�) 2 W



1

; �(�) 2 L

2

(0;1; �



)

o

for any y

0

2 Y



0

:

Theorem 5.1 Suppose that there exist numbers � > 0 and Æ > 0 suh that the assump-

tions (A1) - (A4) are satis�ed for (2.2) - (2.5) with ' 2 N (F;G) and an observation

given by (3.2). Then the observation (3.2) is determining for the output �-onvergene

in (2.4), (2.5), where � is de�ned by (4.2).

Idea of the proof: We try to �nd an operator P = P

�

2 L(Y

�1

; Y

0

) \ L(Y

0

; Y

1

) with

(y; Py)

0

� 0 ; 8y 2 Y

0

; and numbers � > 0; Æ > 0 suh that for any two responses

fy

1

(�); �

1

(�)g and fy

2

(�); �

2

(�)g of (2.4), (2.5) and their assoiated generalized potential �

from ondition (2.8) the integrated inequality (4.1) is true on any time interval 0 < s < t;

i.e.,

m(t)�m(s) + 2�

Z

t

s

m(�)d� +

Z

t

s

p(�)d� �

Z

t

s

g(�)d� : (5.12)

In (5.12) we have introdued the funtions

m(t) :=

1

2

�

y

1

(t)� y

2

(t); P

�

y

1

(t)� y

2

(t)

�

�

0

+

1

2

�(y

1

(t)� y

2

(t)) ; (5.13)

p(t) :=  (y

1

(t))�  

�

y

1

(t)� P

�

y

2

(t)� y

1

(t)

�

�

�  

�

y

2

(t) + P

�

y

1

(t)� y

2

(t)

�

�

+  (y

2

(t)) ;

(5.14)

9



and

g(t) := � ÆkD(y

1

(t)� y

2

(t)) + E(�

1

(t)� �

2

(t))k

2

Z

: (5.15)

In order to guarantee the inequality (5.12) we hoose an operator P = P

�

2 L(Y

�1

; Y

0

) \

L(Y

0

; Y

1

) and numbers � > 0; Æ > 0 suh that

(�(A+ �I)v � B�; Pv)

�1;1

� F (v; �) +G(v; �)� ÆkDv + E�k

2

Z

; 8y 2 Y

1

; 8� 2 � :

(5.16)

The existene of suh a P with (y; Py)

0

� 0 ; 8y 2 Y

0

; follows due to the assumptions

(A2) � (A4) from the in�nite-dimensional version of the Kalman-Yakubovih-Popov

Lemma (Frequeny Theorem [1, 11℄). From (2.4), (2.5) it follows with v(t) := y

1

(t)�y

2

(t)

and �(t) := �

1

(t)� �

2

(t) that

( _v(t); P v(t))

�1;1

+ �(v(t); P v(t))

0

� ((A+ �I)v(t) + B�(t); P v(t))

�1;1

+ p(t) � 0 ;

a:a: t > 0 : (5.17)

Using the estimate (5.16) we derive from (5.17) the inequality

( _v(t); P v(t))

�1;1

+ �(v(t); P v(t))

0

+ F (v(t); �(t)) + G (v(t); �(t))

� ÆkDv(t) + E�(t)k

2

Z

+ p(t) � 0 ; a:a: t > 0 : (5.18)

Integration of (5.18) on the time interval 0 < s < t gives

1

2

(v(t); P v(t))

0

�

1

2

(v(s); P v(s))

0

+ �

Z

t

s

(v(�); P v(�))

0

d� +

Z

t

s

F (v(�); �(�))d�

+

Z

t

s

G(v(�); �(�))d� +

Z

t

s

p(�)d� � Æ

Z

t

s

kDv(t) + E�(�)k

2

Z

d� : (5.19)

From the inequalities (2.7) and (2.8) it follows that

Z

t

s

F (v(�); �(�))d� � 0 (5.20)

and

Z

t

s

G(v(�); �(�))d� �

1

2

h

�

�

Cv(t)

�

� �

�

Cv(s)

�

i

+ �

Z

t

s

�(Cv(�))d� ; 0 < s < t :

(5.21)

Taking into aount now (5.19) � (5.21) we obtain that

1

2

(v(t); P v(t))

0

+

1

2

�(Cv(t))�

1

2

(v(s); P v(s))

0

�

1

2

�(Cv(s)) (5.22)

+2�

Z

t

s

h

1

2

�

v(�); P v(�)

�

0

�

1

2

�

�

Cv(�)

�

i

d� +

Z

t

s

p(�)d� � Æ

Z

t

s

kDv(�) + E�(�)k

2

Z

:

Now, we onlude that (5.22) implies the inequality (5.12) with the funtions m(�); p(�)

and g(�) de�ned by (5.13) � (5.15) .
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Remark 5.1 The frequeny-domain ondition (A4) depends on imbedding properties of

the Sobolev spaes under onsideration. Assume, for example, that G � 0; E = 0 and

F (y; �) = �

0

kyk

2

0

� �

1

kyk

2

1

; (y; �) 2 Y

0

� � ; (5.23)

where �

0

and �

1

are ertain real onstants.

In order to verify (5.10) we introdue the frequeny-domain harateristi

�(i!) := (i!I



� A



�

)

�1

B



(5.24)

for ! 2 R s. t. i! 2 �(A



�

) ; where A



�

:= A



+ �I



:

It follows that the frequeny-domain ondition (5.10) is satis�ed if

�

0

k�(i!)�k

2

Y



0

� �

1

k�(i!)�k

2

Y



1

� ÆkD



�(i!)�k

2

Z



� 0 ;

8 � 2 �



; 8 ! 2 R : i! 2 �(A



�

) : (5.25)

Suppose now that from the imbedding Y



1

� Y



0

� Y



�1

and the properties of the observa-

tion operator D we have the a priori estimate

kvk

2

Y



0

� 

1

kvk

2

Y



1

+ 

2

"

D



kD



vk

2

Z



; 8v 2 Y



1

; (5.26)

where 

1

> 0 and 

2

> 0 are ertain onstants and

"

D



= "

D



(Y



1

; Y



0

) := sup fkwk

Y



0

: w 2 Y



1

; D



w = 0

Z



; kwk

Y



1

� 1g (5.27)

is the ompleteness defet of the observation operator D



with respet to the imbedding

Y



1

� Y



0

:

It follows from (5.26) that the frequeny-domain ondition (5.25) is satis�ed if

�

0



1

k�(i!)�k

2

Y



1

� �

1

k�(i!)�k

2

Y



1

+ �

0



2

"

D



kD



�(i!)�k

2

Z



� ÆkD



�(i!)�k

2

Z



� 0

8 � 2 �



; 8! 2 R : i! 2 �(A



�

) : (5.28)

For (5.28) it is su�ient that

�

0



1

� �

1

� 0 and �

0



2

"

D



� Æ � 0 : (5.29)

We see that if �

0



1

� �

1

� 0 the seond ondition of (5.29) is always satis�ed if the

ompleteness defet of the observation operator is small. In this ase, assuming that the

other assumptions for the Theorem 5.1 are also satis�ed, it follows that the observation

z(t) = Dy(t) is determining for the output stability.

Suppose that D

k

y := (l

1

(y); : : : ; l

k

(y)); where l

i

: Y

1

! R ; i = 1; : : : ; k; are ontinuous

linear funtionals and Y

1

= W

s;2

(
); Y

0

= W

�;2

(
) with s > �. Then "

D



� 

1

(



2

k

)

s��

,

i.e., the ompleteness defet of the observation operator D

k

depends on the smoothness

properties of the imbedding Y



1

� Y



0

(Triebel [14℄). �
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6 Determining observations for seond-order viso-elasti

ontat problems

A typial fritional ontat problem is modeled by the following seond-order evolutionary

variational inequality (Duvant, Lions [4℄, Han, Sofonea [8℄, Jaru¥k, Ek [9℄): Find a

displaement funtion u suh that for a.a. t 2 [0; T ℄

(�u(t); v � _u(t))

V

�1

;V

1

+ (A _u(t); v � _u(t))

V

�1

;V

1

+

�

g

�

u(t)

�

; v � _u(t)

�

V

�1

;V

1

+ j(v)� j

�

_u(t)

�

� 0 ; 8 v 2 V

1

; (6.1)

u(0) = u

0

2 V

1

; _u(0) = v

0

2 V

0

: (6.2)

Here V

1

� V

0

� V

�1

is a Hilbert spae rigging struture, A : V

1

! V

�1

is a linear

ontinuous operator whih is alled visosity operator.

The nonlinear map g : V

1

! V

�1

is the elastiity operator and j : V

1

! R

+

represents the

ontat funtional.

Under a solution u of (6.1), (6.2) on (0; T ) we understand a funtion u(�) 2 L

2

(0; T ;V

1

)

suh that _u(�) 2 L

2

(0; T ;V

1

); �u(�) 2 L

2

(0; T ;V

1

;

R

T

0

j( _u(�))d� < 1 ; and (6.1), (6.2) is

satis�ed for a.a. t 2 (0; T ):

Let us assume that for any (u

0

; v

0

) 2 V

1

�V

0

and any time T > 0 a solution of (6.1), (6.2)

exists. In order to rewrite (6.1), (6.2) as a �rst-order variational inequality (2.4), (2.5) we

de�ne the produt Hilbert spae rigging struture Y

1

� Y

0

� Y

�1

with

Y

0

= V

1

� V

0

; Y

1

= V

1

� V

1

; Y

�1

= V

0

� V

�1

: (6.3)

Let us introdue the new variables y

1

= u ; y

2

= _u and �

2

= v: It follows that _y

1

= y

2

and

_y

2

= �u: In this notation the variational inequality (6.1) an be rewritten as

( _y

2

; �

2

� y

2

)

V

�1

;V

1

+ (Ay

2

; �

2

� y

2

)

V

�1

;V

1

+

�

g(y

1

); �

2

� y

2

�

V

�1

;V

1

+j(�

2

)� j(y

2

) � 0 ; 8 �

2

2 V

1

; (6.4)

Using the produt topology we get for arbitrary y = (y

1

; y

2

) 2 Y

�1

= V

0

� V

�1

and

� = (�

1

; �

2

) 2 Y

1

= V

1

� V

1

the representation of the duality pairing on Y

�1

� Y

1

as

(y; �)

�1;1

= (y

1

; �

1

)

V

1

+ (y

2

; �

2

)

V

�1

;V

1

: (6.5)

It follows from (6.5) that

( _y

2

; �

2

� y

2

)

V

�1

;V

1

= ( _y; � � y)

�1;1

� (y

2

; �

1

� y

1

)

V

1

: (6.6)

A linear bounded operator A : Y

1

! Y

�1

is de�ned by

(�Ay; � � y)

�1;1

= �(y

2

; �

1

� y

1

)

V

1

+ (Ay

2

; �

2

� y

2

)

V

�1

;V

1

;

8 y = (y

1

; y

2

); � = (�

1

; �

2

) 2 Y

1

= V

1

� V

1

: (6.7)
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It is easy to see that A de�ned by (6.7) has the representation

A =

�

0 I

0 �A

�

: (6.8)

In order to determine the linear operator B : � = V

1

! Y

�1

we use the equation

(�B'(y

1

); � � y)

�1;1

= ('(y

1

); �

2

� y

2

)

V

�1

;V

1

;

8 y = (y

1

; y

2

); � = (�

1

; �

2

) 2 Y

1

= V

1

� V

1

: (6.9)

From (6.9) it follows that

B'(Cy) =

�

0

�'(y

1

)

�

; (6.10)

where the linear operator C : Y

1

!W := V

1

is de�ned by (y

1

; y

2

) 7! y

1

:

The last remainig element in the inequality (2.4) is the ontat funtional

 : Y

1

! R

+

given by

 (y) := j(y

2

) ; 8 (y

1

; y

2

) 2 Y

1

= V

1

� V

1

: (6.11)
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