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1 Basic notation

Suppose that Yj is a real Hilbert space with (-, )¢ and || - ||o as scalar product resp. norm.
Suppose also that A : D(A) C Yy — Y} is an unbounded densely defined linear operator.
The Hilbert space Y7 is defined as D(A) equipped with the scalar product

(?Jﬂ?)l = ((ﬁl - A)ya (ﬁl - A)n)[) NAAS D(A)v (11)

where 3 € p(A) (the resolvent set of A) is an arbitrary but fixed number.
The Hilbert space Y_; is by definition the completion of Y, with respect to the norm
12| =1 == (BT — A)"'z]|o. Thus we have the dense and continuous imbeddings

YicYyCcY, (1.2)

which is called Hilbert space rigging structure. In this triple, Yy is the pivot space, Y; is
the interpolation space, and Y_; is the extrapolation space (Triebel [14]).

The duality product (-,-)—11 on Y_; x Y] is the unique extension by continuity of the scalar
product (-,-)y defined on Yy x V7.

If T > 0 is an arbitrary number we define the norm for Bochner measurable functions in
L*(0,T;Y;), j =1,0,—1, through

1/2

lyCll2 = (/OT IIy(t)H?dt) : (1.3)

Let Wr be the space of functions y(-) € L*(0,T;Y;) for which y(-) € L*(0,T;Y ;)
equipped with the norm

21+ lOIE )2 (1.4)

1y () bwr == (llu ()

2 Evolutionary variational inequalities

Suppose Y7 C Yy C Y4 is a real Hilbert space rigging structure with A € £(Y;,Y ).
Assume that = and W are two real Hilbert spaces with scalar products (-,-)=, (-, )w and
norms || - ||z, || - |lw, respectively.

Introduce the linear continuous operators

B:Z—-Y,, C:Y | —Z= (2.1)
and define the set-valued map
0 Ry x W — 2% (2.2)
and the map
Y: Y = R, U{+oo}. (2.3)
Consider the evolutionary variational inequality (Duvant, Lions [4])
(W —Ay—BEn—y)aa+9(n) —¥(y) 20, Vpey, (2:4)
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w(t) =Cy(t), &) € pt,wd)), y(0) =y €Yo (2:5)

Note that in applications ¢ is a material law nonlinearity, v is a contact-type or friction
functional and w(t) = Cy(t) is the output of the inequality.
In the contact free case when ) = 0 the evolutionary variational inequality (2.4) — (2.5)
is equivalent to an evolution equation with a set-valued nonlinearity ¢ given by
y = Ay+ B¢ in Y_,, (2.4)
w(t) = Cy(t),&(t) € p(t,w(t)),y(0) =y € Yy . (2.5)

A function y(-) € Wr is said to be a solution of (2.4), (2.5) on (0,7 if there exists
a function £(+) € L*(0,T;Z) such that for a.a. t € (0,7) the inequality (2.4), (2.5) is

T
satisfied and [ ¢ (y(t))dt < +oo. The pair {y(-),£(-)} is called a response of (2.4), (2.5);
0

£(+) is an associated selection.

Remark 2.1 (Lions [12]) Wy can be continuously imbedded into the space C7 of con-

tinuous mappings [0,7] — Y, equipped with the norm [|y(-)||c, := sup ||y(¢)|lo. Thus,
t€[0,T]
every function from Wy, properly altered by some set of measure zero, is a continuous

function [0, 7] — X and [|y(+)||c; < const||y(-)|lw, -
It follows that the value of a function y(-) € Wr at the point ¢ = 0 has a meaning and
the initial condition (2.5) is well-posed. O

Suppose that F' and G are two quadratic forms on Y] x =. The class N (F, G) of nonlin-
earities for (2.4), (2.5) consists of all maps (2.2) such that the following two conditions
are satisfied:

a) For any T > 0 and any two pairs of functions y;(-), y2(-) € L*(0,T;Y}) and
(), &(-) € L*(0,T; Z) with

&(t) € o(t,Cy;(t)), for a.a.t € [0,T] (2.6)
it follows that
F(yi(t) — y2(t), &(8) — &(t) > 0, aa. t € [0,T7. (2.7)
b) For any T > 0 and any two pairs of functions

yl(')ayZ(') € LZ(OaT; Yi) and 51()?52() € L2(01T; E)

satisfying (2.6) there exist a continuous function ® : W — R (generalized potential) and
a number v > 0 (both may be depending on the given functions) such that

t

[ 60(n) = (). (7) — () i = 3 [2(C (1) = Conlt) ~ B(Cn(5) ~ Cons)

S

t
+ )\/ O(Cyi(1) — Cyso(7))dr forall 0<s<t<T (2.8)
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and

O(Cyr(t) — Cya(t)) > y|Cyr(t) — Cya(V) |3, for a.a. t €[0,T]. (2.9)

(A1) For fixed linear operators A, B, C, fixed function (2.3) and arbitrary y, € 5,7 > 0
and ¢ € N(F,G) there exists a response {y(-),&(-)} of (2.4), (2.5).

Example 2.1 Suppose that 2 C R” is a domain with smooth boundary I' = 02,
h:T — R is a given scalar function (“outer pressure”) and u(x,t) (“ inner pressure”) is a
solution of

g;‘ =Au in QxR (2.10)

subject to the boundary conditions

u=h onI'xRy = —2>0, (2.11)
on
ou
u>h onI'xRy = —=0 (2.12)
on
and the initial condition
u(-,0) = up . (2.13)

The system (2.10) — (2.13) describes the transfer problem of fluid acrossing a semi-
permeable membrane (Lions [12]).
Instead of (2.11) — (2.12) we consider the (nonlinear) boundary condition

ou

— > [' x 2.14

Mg on TxR, .14
where g : R — R is a given function.
In order to get a representation of (2.10) — (2.14) in the form of a variational inequality
(2.4), (2.5) we introduce the spaces

Yy = L*Q),

Y, = WH(Q) = {ve L}Q): gv € L*(Q),i=1,2,...,n} and
T

== WY22(90).

An operator A € L(Y7,Y 1) is defined by

ou Ov
(Au,v)_1; = — /Zaxla% r, Yu,v€Y;. (2.15)



The operator B € L(Z,Y ;) is given by

(BE,y)-1q=— [ &udS, VE€E, Vye, (2.16)
onN

the nonlinear map ¢ : Y7 — = is given by
p(y(=)) =g )(z) on T, (2.17)
and the “contact functional” ¢ : Y7 — Ry U {400} is defined by

0 ifn(x)>h(x)onl,

v(n) = { +00 in other cases. (2.18)

Thus the transfer problem of fluid (2.10) — (2.14) can be considered as evolutionary
variational inequality

(y—Ay—B&, n—y)11+v(n) —v(y) >0, VneY, (2.19)

£(t) =¢(t), y(0)=yo€Yo. (2.20)

Let us describe the class N'(F, G) for (2.19), (2.20). We assume that the nonlinearity ¢
from (2.17) has the following two properties:

(H1) dpo >0 Vy,yp €Y1
0 < (Be(y) — Bo(ya), y1 — y2) 1,1 < piollyn — v2ll} - (2.21)

(H2) There exist a Fréchet differentiable map ® : Y; — R and a number A > 0 such that
with the Fréchet derivative ® € £(Yy, R) the inequality

(e(y),m)1 > @ (y)n+ AB(y), Vnen (2.22)
is satisfied.

It is clear that (2.21) and (2.22) can be considered as a monotonicity condition and a
potential-type condition, respectively. Using (2.21) we can introduce the quadratic form

F(y,{) = MO“y“% o (Bgay)fl,la (yaf) € le X E? (223)
which satisfies (2.7). The inequality (2.22) can be used to define the quadratic form
G(ya 6) = (GlAya 6)5 + (GZBfaf)E on le X = (224)

with G, : Y., — = (i = 1,2). It is easy to see that the form G from (2.24) and the
generalized potential ® from (2.22) satisfy the inequality (2.8) . O



3 Observations that completely determine the
asymptotic behaviour of an output

Assume that Z is a real Hilbert space with norm || - ||z and
D:Yi»Z, E:2—Z (3.1)

are linear bounded operators which are called observation operators with respect to the
observation space Z. If {y(-),&(-)} is an arbitrary response of (2.4), (2.5) then

2()=Dy()+ EL(): R = Z (3-2)
with 2(+) € L (R, ,Z) is an observation (measurement or time series) of the response.
Suppose that a > 0 is a number. The observation (3.2) is determining for the output
a-convergence in (2.4), (2.5) if for any two responses {yi(-),&(-)} and {y2(-), & (1)} of
(2.4), (2.5) from

t+1
/t ID(y1(1) = 92(7)) + E(&i(1) = &(7))||Zdr — 0 for t — 400 (3.3)
it follows that
lim sup 1C Wi (t) — w2(0)lw < (3.4)

(Foias, Prodi [5], Ladyzhenskaya [10], Foias, Temam [6], Chuesov [2, 3]). Inverse prob-
lems for variational inequalities (parameter identification) are considered by Hoffmann,
Sprekels [7], Maksimov [13] and other authors.

Example 3.1 Suppose that {y(-),&(-)} is an arbitrary response of the membrane problem
(2.19) — (2.20). The following operators can be used as observation operators (with
E =0, y(-) = u(x,-) an arbitrary solution) :

) Z=R, z(t):Dy(t):/u(x,t)d:c, £>0: (3.5)
Q
b) Z =R, z(t) =u(xy,t), t>0, zpe€fixed; (3.6)
N
¢) Z=R", Q=J9, «unQ=0, i#j,
j=1

)\j(')ELOO(Qj), )\](SL')ZO ian, jzl,...,N,
A(t) = (/Q M (@)ulz, ), . /Q )\N(:c)u(x,t)d:c>, £>0. (3.7)

Then, for example, z from b) is determining for the a-convergence of the full output in
(2.19) — (2.20) if for arbitrary solutions u,(x,t) and us(z,t) it follows from

41
/ (u1 (o, 7) — us(xy, T))ZdT —0 fort— 40
¢

that
1/2
lim sup ||u; — uo|| = lim sup (/(ul(x,t) — Ug($,t))2d$> < a.
Q

t——+o00 t——+o00



4 Lyapunov-type approach for the construction of de-
termining observations

Suppose that two arbitrary responses {y:(-),&1 ()} and {ya(-),&(-)} of (2.4), (2.5) are
given. We want to find observation operators D and E satisfying (3.1) and an energy-type
operator P = P* € L(Y_1,Yy) N L(Yp, Y1) such that the following conditions are satisfied.

a) Vi(y) =3 Py)o>0 , Vy€eYy;
b) V(yi(t) — v2(t)) = Vi(ya(t) — %2(t)) + 53 @ (Con(t) — Ca(1))
> const.||Cy(t) — Cy2(t) [y
for a.a. t > 0, where ® is a generalized potential for the given pairs of responses;

¢) There exists a number A > 0 such that the functions m(t) := V (y1(¢t) — y2(t)),

9(t) = 1D (t) = y2(t)+ E(&1(t) = &(#)) |7 and a function p (-) € L (Ry; Ry.) satisfy
the inequality

m(t) +2Am(t) +p(t) < g(t), a.a.t>0. (4.1)

00 t+1
Since [ p(7)dT > —c; with some 0 < ¢; < +00 and tliin [ g(r)dr = 0, we get from
0 oy

(4.1) that litmfup m(t) < 5k, e, litmfup Vi(ya(t) — ye(t)) + %@(Cyl(t) — Cys(t)) < 5
—+00 —+00

and, using (2.9) and the property a)

lim sup ||y (£) — C(2)]] <(i)1/2 —a (4.2)
H+oop W Y2 w S A = .

It follows that the observation z(-) = Dy(-) + E£(+) is determining for the output a-
convergence with « from (4.2). If the contact functional satisfies ¢ = 0, i.e. the evolution
inequality (2.4), (2.5) is equivalent to the evolution equation (2.4)", (2.5)', the considered
observation is determining for the output convergence in the usual sense.

5 Frequency-domain methods for the construction of
determining observers

Our goal is to find effective conditions for the existence of Lyapunov-type functions V'
satisfying a) — c) in the Section 4. A general approach consists in using the Frequency
Theorem which is also called Kalman-Yakubovich-Popov Lemma (KYP Lemma [1, 11]).
Let us state the assumptions for this theorem.

(A2) There exists a number A > 0 such that for any 7' > 0 and any f € L*(0,7;Y_;) the
problem

y=A+X)y+f(t), y(0) =y (5.1)



is well-posed, i.e., for arbitrary yo € Yy, f(-) € L?*(0,T;Y_,) there exists an unique solution
y(-) € Wr satisfying (5.1) in the sense that

(@)1= ((A+ADy,n) 11+ (f(t),n)-11, VneEY, aa tel0,T], (5.2)

and depending continuously on the initial data, i.e.,

ly () By < ellolle + c2ll FO)IE 1 (5:3)

where ¢; > 0 and ¢ > 0 are some constants. Furthermore, any solution of

y=(A+A)y, y(0)=uyo (5.4)

is exponentially decreasing for ¢ — 400 , i.e., there exist constants c3 > 0 and € > 0 such
that

ly(®)[lo < ese™lyollo , t >0 (5.5)

(A3) There exists a number A > 0 such that the operator A+ A\I € L(Y1,Y_;) is regular,
i.e., forany T > 0,y € Y1,2r € Y1 and f € L?*(0,T;Y}) the solutions of the direct problem

y=(A+ADy+ f(t), y(0)=y, aa.tel0,T], (5.6)
and of the dual problem
z=—(A+X)z+ f(t), 2(0)=2z2p, aa.tel0,T], (5.7)
are strongly continuous in ¢ in the norm of Y;.

In the next assumption which is called frequency-domain condition it is necessary to
consider the complexification of spaces and linear operators under consideration.

The elements of the complexification Y[ of the real Hilbert space Y, can be written as x+iy
with 2,y € Y, and the inner product of Y will be denoted by (-, -)ye. The complexification
of the other spaces are defined in a similar way. For the linear operator A : Y; — Y_; we
denote by A€ the linear operator A¢: Y — Y4, defined by A%(x +iy) = Az +iAy. Again,
the complexification of the other linear operators which will appear below, is defined in a
similar way.

Consider now the complexification of the quadratic form F' (similarly of G). Suppose that

F(y,8) = (Fiy,y)-11 + 2(Foy, §)= + (F58,8)= (5.8)

for (y,£) € Y1 x E, where Fy = Fy € L(Y1,Y.1), F, € L(Y1,E) and F3 = F§ € L(E,=).
The complexification of the quadratic form (5.8) is the Hermitian form F° defined on
Y x =¢ by

Fc(ya 6) = (Flcya y)Yfl,Yf + 2Re (F2cy7 5)56 + (F?,Cfa 5)56 . (59)



(A4) (Frequency-domain condition)
There exist numbers A > 0 and § > 0 such that the following two properties hold:

a) F(y, &) + G(y,€) = Sl D°y + E€|l5 < 0 (5.10)

for all such (y, &) € Y/° x Z° for that there exists an

weR with iwy=(A°+ %)y + B;

b) The functional

J(go('),f(-)) =
/0 [F(y(7),6(7)) + G(y(7), (7)) — d|IDY(7) + EE(7)||Z]dr (5.11)

is bounded from above on the set
My, = {y(-), )y = (A°+ X[y + B,
y(0) =1y, y(-) e WS, £(+) € L*(0, 00; EC)}

for any y, € Y.

Theorem 5.1 Suppose that there exist numbers A > 0 and 0 > 0 such that the assump-
tions (A1) - (A4) are satisfied for (2.2) - (2.5) with ¢ € N(F,G) and an observation
given by (3.2). Then the observation (3.2) is determining for the output a-convergence
in (2.4), (2.5), where a is defined by (4.2).

Idea of the proof: We try to find an operator P = P* € L(Y_1,Y;) N L(Yp,Y)) with
(y,Py)o > 0, Vy € Yy, and numbers A > 0,0 > 0 such that for any two responses
{v1(+), &)} and {ya2(-),&(-)} of (2.4), (2.5) and their associated generalized potential @
from condition (2.8) the integrated inequality (4.1) is true on any time interval 0 < s < t,
ie.,

m(t) — m(s) + 2)\/ m(7’)d7’+/ p(r)dr < / g(T)dr. (5.12)
In (5.12) we have introduced the functions
m(t) = 5 (1)~ 2(0), Pa(0) — (1)) + 50000 ~ 1), (1)

p(t) = 0w (1) — ¢ (1) = Puat) =11 (1)) = (100) + P (1) = o(0)) ) + (un()
(5.14)



and

g(t) == =8lID(yi(t) — w2 (1)) + E(&1(t) — &(0))IIZ - (5.15)

In order to guarantee the inequality (5.12) we choose an operator P = P* € L(Y_1,Y;) N
L(Yy, Y1) and numbers A > 0, > 0 such that

(—=(A+ X)v— B¢, Pv)_1, > F(v,() +G(v,() — 8||Dv+ EC||, VYyeYr, V(eZ.
(5.16)

The existence of such a P with (y, Py)o > 0, Vy € Yy, follows due to the assumptions
(A2) — (A4) from the infinite-dimensional version of the Kalman-Yakubovich-Popov
Lemma (Frequency Theorem [1, 11]). From (2.4), (2.5) it follows with v(t) := y1(t) —ya(t)
and ((¢) := & (1) — &(t) that

(0(t), Pu(t))—11 + A(v(t), Pv(t))o — ((A+ AD)v(t) + B((t), Pu(t))_11 +p(t) <0,
a.a.t>0. (5.17)

Using the estimate (5.16) we derive from (5.17) the inequality

(0(), Pv(t)) 11 + A(v(t), Pu(t))o + F(v(t),C(t) + G (v(?), (1))
—0[[Dv(t) + EC()| +p(t) <0, aa.t>0. (5.18)

Integration of (5.18) on the time interval 0 < s < t gives
300, Po(O) = 50(s). Pu(s)o + 1 [ (wlr), Po(odr + [ F(o(r),¢(r)ir

2
+/ G(U(T),C(T))d7'+/ p(r)dr < 5/ |Dv(t) + EC(7)||5dT . (5.19)

From the inequalities (2.7) and (2.8) it follows that

/tF(U(T), C(r))dr > 0 (5.20)

and

/ Gu(r),C(r))dr > %[@(C’v(t)) . @(Cv(s))] n )\/ O(Co(r))dr, 0<s<t.
(5.21)

Taking into account now (5.19) — (5.21) we obtain that

S (0(0), Po(t))o + 5 B(Co(0) — 3 (0(s), Po(s))y — 5 B(Co(s) (522)

21 [ [300), Potn), - je(Cotr)]dr+ [ piryar <5 [ IDotr) + ECOIE
Now, we conclude that (5.22) implies the inequality (5.12) with the functions m(-), p(-)
and ¢(-) defined by (5.13) — (5.15) .
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Remark 5.1 The frequency-domain condition (A4) depends on imbedding properties of
the Sobolev spaces under consideration. Assume, for example, that G =0, F = 0 and

F(y,&) = Bollyllc = Aullylly,  (y,6) € Yo x =, (5.23)

where 3y and (3; are certain real constants.
In order to verify (5.10) we introduce the frequency-domain characteristic

x(iw) = (iwl® — A{)~' B¢ (5.24)

forw € Rs. t. iw € p(AS), where A := A+ A]°.
It follows that the frequency-domain condition (5.10) is satisfied if

PAollx(iw)¢]

2 — Bullx(iw)e]

ve = O Dx(iw)€|Z- < 0,
VEEE, VweR: wep(Af). (5.25)

Suppose now that from the imbedding Y C Yy C Y, and the properties of the observa-
tion operator D we have the a priori estimate

||v] %Oc < |y ZYIC + coepe||DV||5., Vv € YS, (5.26)
where ¢; > 0 and ¢y > 0 are certain constants and
epe = epe(Y), YY) == sup {||lw]lyg : w € Y7, DW = 0ge, |w]lye <1} (5.27)

is the completeness defect of the observation operator D¢ with respect to the imbedding
Y C Y.
It follows from (5.26) that the frequency-domain condition (5.25) is satisfied if

Bo cillx(iw)€llTe — Bullx(iw)éllse + Bocae pel| D x(iw)€ Iz — | Dx (iw)é]IZe < 0
VEEE, VweR: wep(A]). (5.28)

For (5.28) it is sufficient that
ﬁoCl—ﬁl SO and ﬁgCgc?Dc—éSO. (529)

We see that if fyc; — 1 < 0 the second condition of (5.29) is always satisfied if the
completeness defect of the observation operator is small. In this case, assuming that the
other assumptions for the Theorem 5.1 are also satisfied, it follows that the observation
z(t) = Dy(t) is determining for the output stability.

Suppose that Dy := (l1(y),... ,lk(y)), where [; : Y1 — R, i =1,... , k, are continuous
linear functionals and Y} = W*(Q),Y, = W??*(Q) with s > 0. Then epec ~ ¢;(¢)"7,
i.e., the completeness defect of the observation operator D) depends on the smoothness
properties of the imbedding Y* C Y (Triebel [14]). O
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6 Determining observations for second-order visco-elastic
contact problems

A typical frictional contact problem is modeled by the following second-order evolutionary
variational inequality (Duvant, Lions [4], Han, Sofonea [8], Jarugk, Eck [9]): Find a
displacement function u such that for a.a. ¢ € [0, 7]

(i(t), v —u(t))v v + (Aut),v —ia(t))y
+ (g(u(t)),v - a(t))v LTI —i(an) 20, Veew, (6.1)

-1,

’LL(O) =uy € V1, ’LL(O) =1y €Vp. (62)

Here V; C Vy, C V_; is a Hilbert space rigging structure, A : V; — V_; is a linear
continuous operator which is called wviscosity operator.

The nonlinear map g : V; — V_ is the elasticity operator and j : V; — R, represents the
contact functional.

Under a solution u of (6.1), (6.2) on (0,7) we understand a function u(-) € L*(0,T;V;)
such that a(-) € L*(0,T;V1),i(-) € L*(0,T;Vy, [) j(a(r))dr < oo, and (6.1), (6.2) is
satisfied for a.a. t € (0,T).

Let us assume that for any (ug,vp) € V) x Vy and any time 7' > 0 a solution of (6.1), (6.2)
exists. In order to rewrite (6.1), (6.2) as a first-order variational inequality (2.4), (2.5) we
define the product Hilbert space rigging structure Y; C Yy C Y_; with

YE):V1XVO, Y1:V1><V1, Y_1:VOXV_1. (63)

Let us introduce the new variables y; = u, yo = @ and 7, = v. It follows that y; = y, and
o = @. In this notation the variational inequality (6.1) can be rewritten as

(2,12 — Y2)v 101 + (Ay2,m2 — y2)v_ v + (9(y1),m2 — yQ)VihV1
+7(m2) — j(y2) 20, Vna € Vi, (6.4)

Using the product topology we get for arbitrary y = (y1,42) € Y1 = Vo x V_; and
n = (n,n2) € Y1 =V, x V; the representation of the duality pairing on Y_; x Y] as

() 11 = W1, m)w + W2s m2)v_, v, - (6.5)

It follows from (6.5) that

(W2, m2 — Y2 )vos = W, n =) =10 — (Y2, m — y1)y, - (6.6)

A linear bounded operator A : Y7 — Y_; is defined by

(—Ay,n—y)-10 = =W, m — yi)w + (Ay2,m2 — y2)v_, v
Vy:(ylayZ)aU:(ﬁlﬂh)EY1:V1><V1- (67)
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It is easy to see that A defined by (6.7) has the representation

A:[g _’A]. (6.8)

In order to determine the linear operator B : = = V; — Y_; we use the equation

(=Bo(y1),n—y)=11 = (Y1), 12 — y2)v_1 1>
vy:(ylay2)a77:(771,772) Elezvl le- (69)

From (6.9) it follows that

Byp(Cy) = { —so(zyl) ] , (6.10)

where the linear operator C' : Y7 — W := V) is defined by (y1,y2) — v1 .
The last remainig element in the inequality (2.4) is the contact functional
Y Yy — Ry given by

b(y) =3(y2)s ¥ (y,52) €Y1 =V x Vr. (6.11)
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